Extensions 1→N→G→Q→1 with N=C2 and Q=C8.18D4

Direct product G=N×Q with N=C2 and Q=C8.18D4
dρLabelID
C2×C8.18D464C2xC8.18D4128,1781


Non-split extensions G=N.Q with N=C2 and Q=C8.18D4
extensionφ:Q→Aut NdρLabelID
C2.1(C8.18D4) = C23.22D8central extension (φ=1)64C2.1(C8.18D4)128,540
C2.2(C8.18D4) = C24.135D4central extension (φ=1)64C2.2(C8.18D4)128,624
C2.3(C8.18D4) = C2.(C88D4)central extension (φ=1)128C2.3(C8.18D4)128,665
C2.4(C8.18D4) = C85(C4⋊C4)central extension (φ=1)128C2.4(C8.18D4)128,674
C2.5(C8.18D4) = (C2×C4)⋊6Q16central extension (φ=1)128C2.5(C8.18D4)128,701
C2.6(C8.18D4) = C8.28D8central stem extension (φ=1)64C2.6(C8.18D4)128,401
C2.7(C8.18D4) = Q81Q16central stem extension (φ=1)128C2.7(C8.18D4)128,402
C2.8(C8.18D4) = D4.1Q16central stem extension (φ=1)64C2.8(C8.18D4)128,407
C2.9(C8.18D4) = Q8.1Q16central stem extension (φ=1)128C2.9(C8.18D4)128,408
C2.10(C8.18D4) = D4.Q16central stem extension (φ=1)64C2.10(C8.18D4)128,415
C2.11(C8.18D4) = Q8.2Q16central stem extension (φ=1)128C2.11(C8.18D4)128,416
C2.12(C8.18D4) = C232Q16central stem extension (φ=1)64C2.12(C8.18D4)128,733
C2.13(C8.18D4) = C24.86D4central stem extension (φ=1)64C2.13(C8.18D4)128,768
C2.14(C8.18D4) = (C2×C4)⋊3Q16central stem extension (φ=1)128C2.14(C8.18D4)128,788
C2.15(C8.18D4) = (C2×C8).52D4central stem extension (φ=1)128C2.15(C8.18D4)128,800
C2.16(C8.18D4) = C24.88D4central stem extension (φ=1)64C2.16(C8.18D4)128,808
C2.17(C8.18D4) = (C2×C4).21Q16central stem extension (φ=1)128C2.17(C8.18D4)128,819

׿
×
𝔽