p-group, metabelian, nilpotent (class 3), monomial
Aliases: Q8.2Q16, C42.235C23, (C8×Q8).7C2, C4⋊C4.210D4, (C2×C8).318D4, C4.27(C2×Q16), C8⋊1C8.10C2, C4.45(C4○D8), C4⋊C8.27C22, (C4×C8).60C22, C4.Q16.5C2, (C2×Q8).155D4, Q8⋊Q8.8C2, C4⋊Q8.58C22, C4.10D8.4C2, C4.6Q16.7C2, C4.SD16.5C2, C4.94(C8.C22), (C4×Q8).270C22, C2.15(D4.3D4), C2.11(C8.18D4), C2.11(Q8.D4), C22.196(C4⋊D4), (C2×C4).20(C4○D4), (C2×C4).1270(C2×D4), SmallGroup(128,416)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for Q8.2Q16
G = < a,b,c,d | a4=c8=1, b2=a2, d2=c4, bab-1=dad-1=a-1, ac=ca, bc=cb, dbd-1=a-1b, dcd-1=a2c-1 >
Subgroups: 144 in 72 conjugacy classes, 34 normal (32 characteristic)
C1, C2, C4, C4, C22, C8, C2×C4, C2×C4, Q8, Q8, C42, C42, C4⋊C4, C4⋊C4, C2×C8, C2×C8, C2×Q8, C2×Q8, C4×C8, C4×C8, Q8⋊C4, C4⋊C8, C4⋊C8, C4.Q8, C2.D8, C4×Q8, C4⋊Q8, C4.10D8, C4.6Q16, C8⋊1C8, C8×Q8, Q8⋊Q8, C4.Q16, C4.SD16, Q8.2Q16
Quotients: C1, C2, C22, D4, C23, Q16, C2×D4, C4○D4, C4⋊D4, C2×Q16, C4○D8, C8.C22, Q8.D4, C8.18D4, D4.3D4, Q8.2Q16
Character table of Q8.2Q16
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 8I | 8J | 8K | 8L | 8M | 8N | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 16 | 16 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | -2 | 2 | -2 | 2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | -2 | 2 | -2 | 2 | -2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | -2 | -2 | 0 | 2 | 0 | -2 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | √2 | -√2 | -√2 | √2 | -√2 | √2 | 0 | 0 | 0 | 0 | symplectic lifted from Q16, Schur index 2 |
ρ14 | 2 | 2 | -2 | -2 | 0 | 2 | 0 | -2 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | √2 | -√2 | -√2 | -√2 | √2 | √2 | 0 | 0 | 0 | 0 | symplectic lifted from Q16, Schur index 2 |
ρ15 | 2 | 2 | -2 | -2 | 0 | 2 | 0 | -2 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | -√2 | √2 | √2 | √2 | -√2 | -√2 | 0 | 0 | 0 | 0 | symplectic lifted from Q16, Schur index 2 |
ρ16 | 2 | 2 | -2 | -2 | 0 | 2 | 0 | -2 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | -√2 | √2 | √2 | -√2 | √2 | -√2 | 0 | 0 | 0 | 0 | symplectic lifted from Q16, Schur index 2 |
ρ17 | 2 | 2 | -2 | -2 | 0 | -2 | 0 | 2 | 2i | 0 | 0 | 0 | -2i | 0 | 0 | √2 | -√2 | -√2 | √2 | √-2 | -√-2 | √-2 | √2 | -√2 | -√-2 | 0 | 0 | 0 | 0 | complex lifted from C4○D8 |
ρ18 | 2 | 2 | -2 | -2 | 0 | -2 | 0 | 2 | -2i | 0 | 0 | 0 | 2i | 0 | 0 | -√2 | √2 | √2 | -√2 | √-2 | -√-2 | √-2 | -√2 | √2 | -√-2 | 0 | 0 | 0 | 0 | complex lifted from C4○D8 |
ρ19 | 2 | -2 | 2 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√-2 | -√2 | √-2 | complex lifted from C4○D8 |
ρ20 | 2 | -2 | 2 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√-2 | √2 | √-2 | complex lifted from C4○D8 |
ρ21 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 2i | -2i | 0 | 0 | -2i | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ22 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | -2i | 2i | 0 | 0 | 2i | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ23 | 2 | -2 | 2 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √-2 | √2 | -√-2 | complex lifted from C4○D8 |
ρ24 | 2 | -2 | 2 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √-2 | -√2 | -√-2 | complex lifted from C4○D8 |
ρ25 | 2 | 2 | -2 | -2 | 0 | -2 | 0 | 2 | 2i | 0 | 0 | 0 | -2i | 0 | 0 | -√2 | √2 | √2 | -√2 | -√-2 | √-2 | -√-2 | -√2 | √2 | √-2 | 0 | 0 | 0 | 0 | complex lifted from C4○D8 |
ρ26 | 2 | 2 | -2 | -2 | 0 | -2 | 0 | 2 | -2i | 0 | 0 | 0 | 2i | 0 | 0 | √2 | -√2 | -√2 | √2 | -√-2 | √-2 | -√-2 | √2 | -√2 | √-2 | 0 | 0 | 0 | 0 | complex lifted from C4○D8 |
ρ27 | 4 | -4 | 4 | -4 | 4 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.C22, Schur index 2 |
ρ28 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√-2 | 2√-2 | -2√-2 | -2√-2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from D4.3D4 |
ρ29 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√-2 | -2√-2 | 2√-2 | 2√-2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from D4.3D4 |
(1 61 22 80)(2 62 23 73)(3 63 24 74)(4 64 17 75)(5 57 18 76)(6 58 19 77)(7 59 20 78)(8 60 21 79)(9 106 43 95)(10 107 44 96)(11 108 45 89)(12 109 46 90)(13 110 47 91)(14 111 48 92)(15 112 41 93)(16 105 42 94)(25 100 50 67)(26 101 51 68)(27 102 52 69)(28 103 53 70)(29 104 54 71)(30 97 55 72)(31 98 56 65)(32 99 49 66)(33 86 124 117)(34 87 125 118)(35 88 126 119)(36 81 127 120)(37 82 128 113)(38 83 121 114)(39 84 122 115)(40 85 123 116)
(1 29 22 54)(2 30 23 55)(3 31 24 56)(4 32 17 49)(5 25 18 50)(6 26 19 51)(7 27 20 52)(8 28 21 53)(9 85 43 116)(10 86 44 117)(11 87 45 118)(12 88 46 119)(13 81 47 120)(14 82 48 113)(15 83 41 114)(16 84 42 115)(33 96 124 107)(34 89 125 108)(35 90 126 109)(36 91 127 110)(37 92 128 111)(38 93 121 112)(39 94 122 105)(40 95 123 106)(57 67 76 100)(58 68 77 101)(59 69 78 102)(60 70 79 103)(61 71 80 104)(62 72 73 97)(63 65 74 98)(64 66 75 99)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)
(1 81 5 85)(2 119 6 115)(3 87 7 83)(4 117 8 113)(9 71 13 67)(10 103 14 99)(11 69 15 65)(12 101 16 97)(17 86 21 82)(18 116 22 120)(19 84 23 88)(20 114 24 118)(25 95 29 91)(26 105 30 109)(27 93 31 89)(28 111 32 107)(33 79 37 75)(34 59 38 63)(35 77 39 73)(36 57 40 61)(41 98 45 102)(42 72 46 68)(43 104 47 100)(44 70 48 66)(49 96 53 92)(50 106 54 110)(51 94 55 90)(52 112 56 108)(58 122 62 126)(60 128 64 124)(74 125 78 121)(76 123 80 127)
G:=sub<Sym(128)| (1,61,22,80)(2,62,23,73)(3,63,24,74)(4,64,17,75)(5,57,18,76)(6,58,19,77)(7,59,20,78)(8,60,21,79)(9,106,43,95)(10,107,44,96)(11,108,45,89)(12,109,46,90)(13,110,47,91)(14,111,48,92)(15,112,41,93)(16,105,42,94)(25,100,50,67)(26,101,51,68)(27,102,52,69)(28,103,53,70)(29,104,54,71)(30,97,55,72)(31,98,56,65)(32,99,49,66)(33,86,124,117)(34,87,125,118)(35,88,126,119)(36,81,127,120)(37,82,128,113)(38,83,121,114)(39,84,122,115)(40,85,123,116), (1,29,22,54)(2,30,23,55)(3,31,24,56)(4,32,17,49)(5,25,18,50)(6,26,19,51)(7,27,20,52)(8,28,21,53)(9,85,43,116)(10,86,44,117)(11,87,45,118)(12,88,46,119)(13,81,47,120)(14,82,48,113)(15,83,41,114)(16,84,42,115)(33,96,124,107)(34,89,125,108)(35,90,126,109)(36,91,127,110)(37,92,128,111)(38,93,121,112)(39,94,122,105)(40,95,123,106)(57,67,76,100)(58,68,77,101)(59,69,78,102)(60,70,79,103)(61,71,80,104)(62,72,73,97)(63,65,74,98)(64,66,75,99), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,81,5,85)(2,119,6,115)(3,87,7,83)(4,117,8,113)(9,71,13,67)(10,103,14,99)(11,69,15,65)(12,101,16,97)(17,86,21,82)(18,116,22,120)(19,84,23,88)(20,114,24,118)(25,95,29,91)(26,105,30,109)(27,93,31,89)(28,111,32,107)(33,79,37,75)(34,59,38,63)(35,77,39,73)(36,57,40,61)(41,98,45,102)(42,72,46,68)(43,104,47,100)(44,70,48,66)(49,96,53,92)(50,106,54,110)(51,94,55,90)(52,112,56,108)(58,122,62,126)(60,128,64,124)(74,125,78,121)(76,123,80,127)>;
G:=Group( (1,61,22,80)(2,62,23,73)(3,63,24,74)(4,64,17,75)(5,57,18,76)(6,58,19,77)(7,59,20,78)(8,60,21,79)(9,106,43,95)(10,107,44,96)(11,108,45,89)(12,109,46,90)(13,110,47,91)(14,111,48,92)(15,112,41,93)(16,105,42,94)(25,100,50,67)(26,101,51,68)(27,102,52,69)(28,103,53,70)(29,104,54,71)(30,97,55,72)(31,98,56,65)(32,99,49,66)(33,86,124,117)(34,87,125,118)(35,88,126,119)(36,81,127,120)(37,82,128,113)(38,83,121,114)(39,84,122,115)(40,85,123,116), (1,29,22,54)(2,30,23,55)(3,31,24,56)(4,32,17,49)(5,25,18,50)(6,26,19,51)(7,27,20,52)(8,28,21,53)(9,85,43,116)(10,86,44,117)(11,87,45,118)(12,88,46,119)(13,81,47,120)(14,82,48,113)(15,83,41,114)(16,84,42,115)(33,96,124,107)(34,89,125,108)(35,90,126,109)(36,91,127,110)(37,92,128,111)(38,93,121,112)(39,94,122,105)(40,95,123,106)(57,67,76,100)(58,68,77,101)(59,69,78,102)(60,70,79,103)(61,71,80,104)(62,72,73,97)(63,65,74,98)(64,66,75,99), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,81,5,85)(2,119,6,115)(3,87,7,83)(4,117,8,113)(9,71,13,67)(10,103,14,99)(11,69,15,65)(12,101,16,97)(17,86,21,82)(18,116,22,120)(19,84,23,88)(20,114,24,118)(25,95,29,91)(26,105,30,109)(27,93,31,89)(28,111,32,107)(33,79,37,75)(34,59,38,63)(35,77,39,73)(36,57,40,61)(41,98,45,102)(42,72,46,68)(43,104,47,100)(44,70,48,66)(49,96,53,92)(50,106,54,110)(51,94,55,90)(52,112,56,108)(58,122,62,126)(60,128,64,124)(74,125,78,121)(76,123,80,127) );
G=PermutationGroup([[(1,61,22,80),(2,62,23,73),(3,63,24,74),(4,64,17,75),(5,57,18,76),(6,58,19,77),(7,59,20,78),(8,60,21,79),(9,106,43,95),(10,107,44,96),(11,108,45,89),(12,109,46,90),(13,110,47,91),(14,111,48,92),(15,112,41,93),(16,105,42,94),(25,100,50,67),(26,101,51,68),(27,102,52,69),(28,103,53,70),(29,104,54,71),(30,97,55,72),(31,98,56,65),(32,99,49,66),(33,86,124,117),(34,87,125,118),(35,88,126,119),(36,81,127,120),(37,82,128,113),(38,83,121,114),(39,84,122,115),(40,85,123,116)], [(1,29,22,54),(2,30,23,55),(3,31,24,56),(4,32,17,49),(5,25,18,50),(6,26,19,51),(7,27,20,52),(8,28,21,53),(9,85,43,116),(10,86,44,117),(11,87,45,118),(12,88,46,119),(13,81,47,120),(14,82,48,113),(15,83,41,114),(16,84,42,115),(33,96,124,107),(34,89,125,108),(35,90,126,109),(36,91,127,110),(37,92,128,111),(38,93,121,112),(39,94,122,105),(40,95,123,106),(57,67,76,100),(58,68,77,101),(59,69,78,102),(60,70,79,103),(61,71,80,104),(62,72,73,97),(63,65,74,98),(64,66,75,99)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128)], [(1,81,5,85),(2,119,6,115),(3,87,7,83),(4,117,8,113),(9,71,13,67),(10,103,14,99),(11,69,15,65),(12,101,16,97),(17,86,21,82),(18,116,22,120),(19,84,23,88),(20,114,24,118),(25,95,29,91),(26,105,30,109),(27,93,31,89),(28,111,32,107),(33,79,37,75),(34,59,38,63),(35,77,39,73),(36,57,40,61),(41,98,45,102),(42,72,46,68),(43,104,47,100),(44,70,48,66),(49,96,53,92),(50,106,54,110),(51,94,55,90),(52,112,56,108),(58,122,62,126),(60,128,64,124),(74,125,78,121),(76,123,80,127)]])
Matrix representation of Q8.2Q16 ►in GL4(𝔽17) generated by
16 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 13 | 0 |
0 | 0 | 0 | 4 |
0 | 13 | 0 | 0 |
4 | 0 | 0 | 0 |
0 | 0 | 0 | 15 |
0 | 0 | 9 | 0 |
3 | 14 | 0 | 0 |
3 | 3 | 0 | 0 |
0 | 0 | 4 | 0 |
0 | 0 | 0 | 4 |
5 | 5 | 0 | 0 |
5 | 12 | 0 | 0 |
0 | 0 | 0 | 4 |
0 | 0 | 13 | 0 |
G:=sub<GL(4,GF(17))| [16,0,0,0,0,16,0,0,0,0,13,0,0,0,0,4],[0,4,0,0,13,0,0,0,0,0,0,9,0,0,15,0],[3,3,0,0,14,3,0,0,0,0,4,0,0,0,0,4],[5,5,0,0,5,12,0,0,0,0,0,13,0,0,4,0] >;
Q8.2Q16 in GAP, Magma, Sage, TeX
Q_8._2Q_{16}
% in TeX
G:=Group("Q8.2Q16");
// GroupNames label
G:=SmallGroup(128,416);
// by ID
G=gap.SmallGroup(128,416);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,2,224,141,736,422,352,1123,136,2804,718,172]);
// Polycyclic
G:=Group<a,b,c,d|a^4=c^8=1,b^2=a^2,d^2=c^4,b*a*b^-1=d*a*d^-1=a^-1,a*c=c*a,b*c=c*b,d*b*d^-1=a^-1*b,d*c*d^-1=a^2*c^-1>;
// generators/relations
Export