Copied to
clipboard

G = Q8.2Q16order 128 = 27

2nd non-split extension by Q8 of Q16 acting via Q16/C8=C2

p-group, metabelian, nilpotent (class 3), monomial

Aliases: Q8.2Q16, C42.235C23, (C8×Q8).7C2, C4⋊C4.210D4, (C2×C8).318D4, C4.27(C2×Q16), C81C8.10C2, C4.45(C4○D8), C4⋊C8.27C22, (C4×C8).60C22, C4.Q16.5C2, (C2×Q8).155D4, Q8⋊Q8.8C2, C4⋊Q8.58C22, C4.10D8.4C2, C4.6Q16.7C2, C4.SD16.5C2, C4.94(C8.C22), (C4×Q8).270C22, C2.15(D4.3D4), C2.11(C8.18D4), C2.11(Q8.D4), C22.196(C4⋊D4), (C2×C4).20(C4○D4), (C2×C4).1270(C2×D4), SmallGroup(128,416)

Series: Derived Chief Lower central Upper central Jennings

C1C42 — Q8.2Q16
C1C2C22C2×C4C42C4×Q8C8×Q8 — Q8.2Q16
C1C22C42 — Q8.2Q16
C1C22C42 — Q8.2Q16
C1C22C22C42 — Q8.2Q16

Generators and relations for Q8.2Q16
 G = < a,b,c,d | a4=c8=1, b2=a2, d2=c4, bab-1=dad-1=a-1, ac=ca, bc=cb, dbd-1=a-1b, dcd-1=a2c-1 >

Subgroups: 144 in 72 conjugacy classes, 34 normal (32 characteristic)
C1, C2, C4, C4, C22, C8, C2×C4, C2×C4, Q8, Q8, C42, C42, C4⋊C4, C4⋊C4, C2×C8, C2×C8, C2×Q8, C2×Q8, C4×C8, C4×C8, Q8⋊C4, C4⋊C8, C4⋊C8, C4.Q8, C2.D8, C4×Q8, C4⋊Q8, C4.10D8, C4.6Q16, C81C8, C8×Q8, Q8⋊Q8, C4.Q16, C4.SD16, Q8.2Q16
Quotients: C1, C2, C22, D4, C23, Q16, C2×D4, C4○D4, C4⋊D4, C2×Q16, C4○D8, C8.C22, Q8.D4, C8.18D4, D4.3D4, Q8.2Q16

Character table of Q8.2Q16

 class 12A2B2C4A4B4C4D4E4F4G4H4I4J4K8A8B8C8D8E8F8G8H8I8J8K8L8M8N
 size 1111222244444161622224444448888
ρ111111111111111111111111111111    trivial
ρ211111111-1-1-11-1-11-1-1-1-1111-1-11-11-11    linear of order 2
ρ31111111111111-11-1-1-1-1-1-1-1-1-1-11-11-1    linear of order 2
ρ411111111-1-1-11-1111111-1-1-111-1-1-1-1-1    linear of order 2
ρ511111111111111-1-1-1-1-1-1-1-1-1-1-1-11-11    linear of order 2
ρ611111111-1-1-11-1-1-11111-1-1-111-11111    linear of order 2
ρ71111111111111-1-11111111111-1-1-1-1    linear of order 2
ρ811111111-1-1-11-11-1-1-1-1-1111-1-111-11-1    linear of order 2
ρ922222-22-2000-2000-2-2-2-20002200000    orthogonal lifted from D4
ρ102222-22-222-2-2-220000000000000000    orthogonal lifted from D4
ρ112222-22-22-222-2-20000000000000000    orthogonal lifted from D4
ρ1222222-22-2000-20002222000-2-200000    orthogonal lifted from D4
ρ1322-2-2020-20-220000-222-22-2-22-220000    symplectic lifted from Q16, Schur index 2
ρ1422-2-2020-202-200002-2-222-2-2-2220000    symplectic lifted from Q16, Schur index 2
ρ1522-2-2020-202-20000-222-2-2222-2-20000    symplectic lifted from Q16, Schur index 2
ρ1622-2-2020-20-2200002-2-22-222-22-20000    symplectic lifted from Q16, Schur index 2
ρ1722-2-20-2022i000-2i002-2-22-2--2-22-2--20000    complex lifted from C4○D8
ρ1822-2-20-202-2i0002i00-222-2-2--2-2-22--20000    complex lifted from C4○D8
ρ192-22-2-202000000002i-2i2i-2i0000002--2-2-2    complex lifted from C4○D8
ρ202-22-2-20200000000-2i2i-2i2i000000-2--22-2    complex lifted from C4○D8
ρ212222-2-2-2-2000200000002i2i-2i00-2i0000    complex lifted from C4○D4
ρ222222-2-2-2-200020000000-2i-2i2i002i0000    complex lifted from C4○D4
ρ232-22-2-202000000002i-2i2i-2i000000-2-22--2    complex lifted from C4○D8
ρ242-22-2-20200000000-2i2i-2i2i0000002-2-2--2    complex lifted from C4○D8
ρ2522-2-20-2022i000-2i00-222-2--2-2--2-22-20000    complex lifted from C4○D8
ρ2622-2-20-202-2i0002i002-2-22--2-2--22-2-20000    complex lifted from C4○D8
ρ274-44-440-40000000000000000000000    symplectic lifted from C8.C22, Schur index 2
ρ284-4-44000000000002-22-2-2-2-2-20000000000    complex lifted from D4.3D4
ρ294-4-4400000000000-2-2-2-22-22-20000000000    complex lifted from D4.3D4

Smallest permutation representation of Q8.2Q16
Regular action on 128 points
Generators in S128
(1 61 22 80)(2 62 23 73)(3 63 24 74)(4 64 17 75)(5 57 18 76)(6 58 19 77)(7 59 20 78)(8 60 21 79)(9 106 43 95)(10 107 44 96)(11 108 45 89)(12 109 46 90)(13 110 47 91)(14 111 48 92)(15 112 41 93)(16 105 42 94)(25 100 50 67)(26 101 51 68)(27 102 52 69)(28 103 53 70)(29 104 54 71)(30 97 55 72)(31 98 56 65)(32 99 49 66)(33 86 124 117)(34 87 125 118)(35 88 126 119)(36 81 127 120)(37 82 128 113)(38 83 121 114)(39 84 122 115)(40 85 123 116)
(1 29 22 54)(2 30 23 55)(3 31 24 56)(4 32 17 49)(5 25 18 50)(6 26 19 51)(7 27 20 52)(8 28 21 53)(9 85 43 116)(10 86 44 117)(11 87 45 118)(12 88 46 119)(13 81 47 120)(14 82 48 113)(15 83 41 114)(16 84 42 115)(33 96 124 107)(34 89 125 108)(35 90 126 109)(36 91 127 110)(37 92 128 111)(38 93 121 112)(39 94 122 105)(40 95 123 106)(57 67 76 100)(58 68 77 101)(59 69 78 102)(60 70 79 103)(61 71 80 104)(62 72 73 97)(63 65 74 98)(64 66 75 99)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)
(1 81 5 85)(2 119 6 115)(3 87 7 83)(4 117 8 113)(9 71 13 67)(10 103 14 99)(11 69 15 65)(12 101 16 97)(17 86 21 82)(18 116 22 120)(19 84 23 88)(20 114 24 118)(25 95 29 91)(26 105 30 109)(27 93 31 89)(28 111 32 107)(33 79 37 75)(34 59 38 63)(35 77 39 73)(36 57 40 61)(41 98 45 102)(42 72 46 68)(43 104 47 100)(44 70 48 66)(49 96 53 92)(50 106 54 110)(51 94 55 90)(52 112 56 108)(58 122 62 126)(60 128 64 124)(74 125 78 121)(76 123 80 127)

G:=sub<Sym(128)| (1,61,22,80)(2,62,23,73)(3,63,24,74)(4,64,17,75)(5,57,18,76)(6,58,19,77)(7,59,20,78)(8,60,21,79)(9,106,43,95)(10,107,44,96)(11,108,45,89)(12,109,46,90)(13,110,47,91)(14,111,48,92)(15,112,41,93)(16,105,42,94)(25,100,50,67)(26,101,51,68)(27,102,52,69)(28,103,53,70)(29,104,54,71)(30,97,55,72)(31,98,56,65)(32,99,49,66)(33,86,124,117)(34,87,125,118)(35,88,126,119)(36,81,127,120)(37,82,128,113)(38,83,121,114)(39,84,122,115)(40,85,123,116), (1,29,22,54)(2,30,23,55)(3,31,24,56)(4,32,17,49)(5,25,18,50)(6,26,19,51)(7,27,20,52)(8,28,21,53)(9,85,43,116)(10,86,44,117)(11,87,45,118)(12,88,46,119)(13,81,47,120)(14,82,48,113)(15,83,41,114)(16,84,42,115)(33,96,124,107)(34,89,125,108)(35,90,126,109)(36,91,127,110)(37,92,128,111)(38,93,121,112)(39,94,122,105)(40,95,123,106)(57,67,76,100)(58,68,77,101)(59,69,78,102)(60,70,79,103)(61,71,80,104)(62,72,73,97)(63,65,74,98)(64,66,75,99), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,81,5,85)(2,119,6,115)(3,87,7,83)(4,117,8,113)(9,71,13,67)(10,103,14,99)(11,69,15,65)(12,101,16,97)(17,86,21,82)(18,116,22,120)(19,84,23,88)(20,114,24,118)(25,95,29,91)(26,105,30,109)(27,93,31,89)(28,111,32,107)(33,79,37,75)(34,59,38,63)(35,77,39,73)(36,57,40,61)(41,98,45,102)(42,72,46,68)(43,104,47,100)(44,70,48,66)(49,96,53,92)(50,106,54,110)(51,94,55,90)(52,112,56,108)(58,122,62,126)(60,128,64,124)(74,125,78,121)(76,123,80,127)>;

G:=Group( (1,61,22,80)(2,62,23,73)(3,63,24,74)(4,64,17,75)(5,57,18,76)(6,58,19,77)(7,59,20,78)(8,60,21,79)(9,106,43,95)(10,107,44,96)(11,108,45,89)(12,109,46,90)(13,110,47,91)(14,111,48,92)(15,112,41,93)(16,105,42,94)(25,100,50,67)(26,101,51,68)(27,102,52,69)(28,103,53,70)(29,104,54,71)(30,97,55,72)(31,98,56,65)(32,99,49,66)(33,86,124,117)(34,87,125,118)(35,88,126,119)(36,81,127,120)(37,82,128,113)(38,83,121,114)(39,84,122,115)(40,85,123,116), (1,29,22,54)(2,30,23,55)(3,31,24,56)(4,32,17,49)(5,25,18,50)(6,26,19,51)(7,27,20,52)(8,28,21,53)(9,85,43,116)(10,86,44,117)(11,87,45,118)(12,88,46,119)(13,81,47,120)(14,82,48,113)(15,83,41,114)(16,84,42,115)(33,96,124,107)(34,89,125,108)(35,90,126,109)(36,91,127,110)(37,92,128,111)(38,93,121,112)(39,94,122,105)(40,95,123,106)(57,67,76,100)(58,68,77,101)(59,69,78,102)(60,70,79,103)(61,71,80,104)(62,72,73,97)(63,65,74,98)(64,66,75,99), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,81,5,85)(2,119,6,115)(3,87,7,83)(4,117,8,113)(9,71,13,67)(10,103,14,99)(11,69,15,65)(12,101,16,97)(17,86,21,82)(18,116,22,120)(19,84,23,88)(20,114,24,118)(25,95,29,91)(26,105,30,109)(27,93,31,89)(28,111,32,107)(33,79,37,75)(34,59,38,63)(35,77,39,73)(36,57,40,61)(41,98,45,102)(42,72,46,68)(43,104,47,100)(44,70,48,66)(49,96,53,92)(50,106,54,110)(51,94,55,90)(52,112,56,108)(58,122,62,126)(60,128,64,124)(74,125,78,121)(76,123,80,127) );

G=PermutationGroup([[(1,61,22,80),(2,62,23,73),(3,63,24,74),(4,64,17,75),(5,57,18,76),(6,58,19,77),(7,59,20,78),(8,60,21,79),(9,106,43,95),(10,107,44,96),(11,108,45,89),(12,109,46,90),(13,110,47,91),(14,111,48,92),(15,112,41,93),(16,105,42,94),(25,100,50,67),(26,101,51,68),(27,102,52,69),(28,103,53,70),(29,104,54,71),(30,97,55,72),(31,98,56,65),(32,99,49,66),(33,86,124,117),(34,87,125,118),(35,88,126,119),(36,81,127,120),(37,82,128,113),(38,83,121,114),(39,84,122,115),(40,85,123,116)], [(1,29,22,54),(2,30,23,55),(3,31,24,56),(4,32,17,49),(5,25,18,50),(6,26,19,51),(7,27,20,52),(8,28,21,53),(9,85,43,116),(10,86,44,117),(11,87,45,118),(12,88,46,119),(13,81,47,120),(14,82,48,113),(15,83,41,114),(16,84,42,115),(33,96,124,107),(34,89,125,108),(35,90,126,109),(36,91,127,110),(37,92,128,111),(38,93,121,112),(39,94,122,105),(40,95,123,106),(57,67,76,100),(58,68,77,101),(59,69,78,102),(60,70,79,103),(61,71,80,104),(62,72,73,97),(63,65,74,98),(64,66,75,99)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128)], [(1,81,5,85),(2,119,6,115),(3,87,7,83),(4,117,8,113),(9,71,13,67),(10,103,14,99),(11,69,15,65),(12,101,16,97),(17,86,21,82),(18,116,22,120),(19,84,23,88),(20,114,24,118),(25,95,29,91),(26,105,30,109),(27,93,31,89),(28,111,32,107),(33,79,37,75),(34,59,38,63),(35,77,39,73),(36,57,40,61),(41,98,45,102),(42,72,46,68),(43,104,47,100),(44,70,48,66),(49,96,53,92),(50,106,54,110),(51,94,55,90),(52,112,56,108),(58,122,62,126),(60,128,64,124),(74,125,78,121),(76,123,80,127)]])

Matrix representation of Q8.2Q16 in GL4(𝔽17) generated by

16000
01600
00130
0004
,
01300
4000
00015
0090
,
31400
3300
0040
0004
,
5500
51200
0004
00130
G:=sub<GL(4,GF(17))| [16,0,0,0,0,16,0,0,0,0,13,0,0,0,0,4],[0,4,0,0,13,0,0,0,0,0,0,9,0,0,15,0],[3,3,0,0,14,3,0,0,0,0,4,0,0,0,0,4],[5,5,0,0,5,12,0,0,0,0,0,13,0,0,4,0] >;

Q8.2Q16 in GAP, Magma, Sage, TeX

Q_8._2Q_{16}
% in TeX

G:=Group("Q8.2Q16");
// GroupNames label

G:=SmallGroup(128,416);
// by ID

G=gap.SmallGroup(128,416);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,2,224,141,736,422,352,1123,136,2804,718,172]);
// Polycyclic

G:=Group<a,b,c,d|a^4=c^8=1,b^2=a^2,d^2=c^4,b*a*b^-1=d*a*d^-1=a^-1,a*c=c*a,b*c=c*b,d*b*d^-1=a^-1*b,d*c*d^-1=a^2*c^-1>;
// generators/relations

Export

Character table of Q8.2Q16 in TeX

׿
×
𝔽