p-group, metabelian, nilpotent (class 3), monomial
Aliases: Q8.1Q16, C8.15Q16, C42.227C23, (C8×Q8).6C2, C8⋊1C8.8C2, C4⋊C4.202D4, (C2×C8).346D4, C4.41(C2×Q16), C8⋊2Q8.5C2, C4.43(C4○D8), C4⋊C8.23C22, (C4×C8).56C22, C4.Q16.4C2, (C2×Q8).151D4, C4⋊Q8.50C22, C2.8(C4⋊2Q16), C4.6Q16.3C2, C2.9(D4.4D4), C2.9(C8.18D4), (C4×Q8).266C22, C4.115(C8.C22), C22.188(C4⋊D4), (C2×C4).12(C4○D4), (C2×C4).1262(C2×D4), SmallGroup(128,408)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for Q8.1Q16
G = < a,b,c,d | a4=c8=1, b2=a2, d2=a2c4, bab-1=dad-1=a-1, ac=ca, bc=cb, dbd-1=a-1b, dcd-1=c-1 >
Subgroups: 144 in 72 conjugacy classes, 36 normal (24 characteristic)
C1, C2, C4, C4, C22, C8, C8, C2×C4, C2×C4, Q8, Q8, C42, C42, C4⋊C4, C4⋊C4, C2×C8, C2×C8, C2×Q8, C2×Q8, C4×C8, C4×C8, Q8⋊C4, C4⋊C8, C4⋊C8, C4⋊C8, C2.D8, C4×Q8, C4⋊Q8, C4.6Q16, C8⋊1C8, C8×Q8, C4.Q16, C8⋊2Q8, Q8.1Q16
Quotients: C1, C2, C22, D4, C23, Q16, C2×D4, C4○D4, C4⋊D4, C2×Q16, C4○D8, C8.C22, C4⋊2Q16, C8.18D4, D4.4D4, Q8.1Q16
Character table of Q8.1Q16
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 8I | 8J | 8K | 8L | 8M | 8N | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 16 | 16 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | -2 | 2 | -2 | 2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | -2 | 2 | -2 | 2 | -2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | -2 | -2 | 0 | 2 | 0 | -2 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | √2 | -√2 | -√2 | √2 | -√2 | √2 | 0 | 0 | 0 | 0 | symplectic lifted from Q16, Schur index 2 |
ρ14 | 2 | 2 | -2 | -2 | 0 | 2 | 0 | -2 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | √2 | -√2 | -√2 | -√2 | √2 | √2 | 0 | 0 | 0 | 0 | symplectic lifted from Q16, Schur index 2 |
ρ15 | 2 | -2 | 2 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | symplectic lifted from Q16, Schur index 2 |
ρ16 | 2 | 2 | -2 | -2 | 0 | 2 | 0 | -2 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | -√2 | √2 | √2 | √2 | -√2 | -√2 | 0 | 0 | 0 | 0 | symplectic lifted from Q16, Schur index 2 |
ρ17 | 2 | -2 | 2 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | symplectic lifted from Q16, Schur index 2 |
ρ18 | 2 | -2 | 2 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | symplectic lifted from Q16, Schur index 2 |
ρ19 | 2 | -2 | 2 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | symplectic lifted from Q16, Schur index 2 |
ρ20 | 2 | 2 | -2 | -2 | 0 | 2 | 0 | -2 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | -√2 | √2 | √2 | -√2 | √2 | -√2 | 0 | 0 | 0 | 0 | symplectic lifted from Q16, Schur index 2 |
ρ21 | 2 | 2 | -2 | -2 | 0 | -2 | 0 | 2 | 2i | 0 | 0 | 0 | -2i | 0 | 0 | √2 | -√2 | -√2 | √2 | √-2 | -√-2 | √-2 | √2 | -√2 | -√-2 | 0 | 0 | 0 | 0 | complex lifted from C4○D8 |
ρ22 | 2 | 2 | -2 | -2 | 0 | -2 | 0 | 2 | -2i | 0 | 0 | 0 | 2i | 0 | 0 | -√2 | √2 | √2 | -√2 | √-2 | -√-2 | √-2 | -√2 | √2 | -√-2 | 0 | 0 | 0 | 0 | complex lifted from C4○D8 |
ρ23 | 2 | 2 | -2 | -2 | 0 | -2 | 0 | 2 | 2i | 0 | 0 | 0 | -2i | 0 | 0 | -√2 | √2 | √2 | -√2 | -√-2 | √-2 | -√-2 | -√2 | √2 | √-2 | 0 | 0 | 0 | 0 | complex lifted from C4○D8 |
ρ24 | 2 | 2 | -2 | -2 | 0 | -2 | 0 | 2 | -2i | 0 | 0 | 0 | 2i | 0 | 0 | √2 | -√2 | -√2 | √2 | -√-2 | √-2 | -√-2 | √2 | -√2 | √-2 | 0 | 0 | 0 | 0 | complex lifted from C4○D8 |
ρ25 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 2i | -2i | 0 | 0 | -2i | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ26 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | -2i | 2i | 0 | 0 | 2i | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ27 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√2 | 2√2 | -2√2 | -2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4.4D4 |
ρ28 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√2 | -2√2 | 2√2 | 2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4.4D4 |
ρ29 | 4 | -4 | 4 | -4 | 4 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.C22, Schur index 2 |
(1 73 57 19)(2 74 58 20)(3 75 59 21)(4 76 60 22)(5 77 61 23)(6 78 62 24)(7 79 63 17)(8 80 64 18)(9 116 88 47)(10 117 81 48)(11 118 82 41)(12 119 83 42)(13 120 84 43)(14 113 85 44)(15 114 86 45)(16 115 87 46)(25 101 71 51)(26 102 72 52)(27 103 65 53)(28 104 66 54)(29 97 67 55)(30 98 68 56)(31 99 69 49)(32 100 70 50)(33 94 108 128)(34 95 109 121)(35 96 110 122)(36 89 111 123)(37 90 112 124)(38 91 105 125)(39 92 106 126)(40 93 107 127)
(1 101 57 51)(2 102 58 52)(3 103 59 53)(4 104 60 54)(5 97 61 55)(6 98 62 56)(7 99 63 49)(8 100 64 50)(9 112 88 37)(10 105 81 38)(11 106 82 39)(12 107 83 40)(13 108 84 33)(14 109 85 34)(15 110 86 35)(16 111 87 36)(17 69 79 31)(18 70 80 32)(19 71 73 25)(20 72 74 26)(21 65 75 27)(22 66 76 28)(23 67 77 29)(24 68 78 30)(41 126 118 92)(42 127 119 93)(43 128 120 94)(44 121 113 95)(45 122 114 96)(46 123 115 89)(47 124 116 90)(48 125 117 91)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)
(1 123 61 93)(2 122 62 92)(3 121 63 91)(4 128 64 90)(5 127 57 89)(6 126 58 96)(7 125 59 95)(8 124 60 94)(9 104 84 50)(10 103 85 49)(11 102 86 56)(12 101 87 55)(13 100 88 54)(14 99 81 53)(15 98 82 52)(16 97 83 51)(17 38 75 109)(18 37 76 108)(19 36 77 107)(20 35 78 106)(21 34 79 105)(22 33 80 112)(23 40 73 111)(24 39 74 110)(25 46 67 119)(26 45 68 118)(27 44 69 117)(28 43 70 116)(29 42 71 115)(30 41 72 114)(31 48 65 113)(32 47 66 120)
G:=sub<Sym(128)| (1,73,57,19)(2,74,58,20)(3,75,59,21)(4,76,60,22)(5,77,61,23)(6,78,62,24)(7,79,63,17)(8,80,64,18)(9,116,88,47)(10,117,81,48)(11,118,82,41)(12,119,83,42)(13,120,84,43)(14,113,85,44)(15,114,86,45)(16,115,87,46)(25,101,71,51)(26,102,72,52)(27,103,65,53)(28,104,66,54)(29,97,67,55)(30,98,68,56)(31,99,69,49)(32,100,70,50)(33,94,108,128)(34,95,109,121)(35,96,110,122)(36,89,111,123)(37,90,112,124)(38,91,105,125)(39,92,106,126)(40,93,107,127), (1,101,57,51)(2,102,58,52)(3,103,59,53)(4,104,60,54)(5,97,61,55)(6,98,62,56)(7,99,63,49)(8,100,64,50)(9,112,88,37)(10,105,81,38)(11,106,82,39)(12,107,83,40)(13,108,84,33)(14,109,85,34)(15,110,86,35)(16,111,87,36)(17,69,79,31)(18,70,80,32)(19,71,73,25)(20,72,74,26)(21,65,75,27)(22,66,76,28)(23,67,77,29)(24,68,78,30)(41,126,118,92)(42,127,119,93)(43,128,120,94)(44,121,113,95)(45,122,114,96)(46,123,115,89)(47,124,116,90)(48,125,117,91), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,123,61,93)(2,122,62,92)(3,121,63,91)(4,128,64,90)(5,127,57,89)(6,126,58,96)(7,125,59,95)(8,124,60,94)(9,104,84,50)(10,103,85,49)(11,102,86,56)(12,101,87,55)(13,100,88,54)(14,99,81,53)(15,98,82,52)(16,97,83,51)(17,38,75,109)(18,37,76,108)(19,36,77,107)(20,35,78,106)(21,34,79,105)(22,33,80,112)(23,40,73,111)(24,39,74,110)(25,46,67,119)(26,45,68,118)(27,44,69,117)(28,43,70,116)(29,42,71,115)(30,41,72,114)(31,48,65,113)(32,47,66,120)>;
G:=Group( (1,73,57,19)(2,74,58,20)(3,75,59,21)(4,76,60,22)(5,77,61,23)(6,78,62,24)(7,79,63,17)(8,80,64,18)(9,116,88,47)(10,117,81,48)(11,118,82,41)(12,119,83,42)(13,120,84,43)(14,113,85,44)(15,114,86,45)(16,115,87,46)(25,101,71,51)(26,102,72,52)(27,103,65,53)(28,104,66,54)(29,97,67,55)(30,98,68,56)(31,99,69,49)(32,100,70,50)(33,94,108,128)(34,95,109,121)(35,96,110,122)(36,89,111,123)(37,90,112,124)(38,91,105,125)(39,92,106,126)(40,93,107,127), (1,101,57,51)(2,102,58,52)(3,103,59,53)(4,104,60,54)(5,97,61,55)(6,98,62,56)(7,99,63,49)(8,100,64,50)(9,112,88,37)(10,105,81,38)(11,106,82,39)(12,107,83,40)(13,108,84,33)(14,109,85,34)(15,110,86,35)(16,111,87,36)(17,69,79,31)(18,70,80,32)(19,71,73,25)(20,72,74,26)(21,65,75,27)(22,66,76,28)(23,67,77,29)(24,68,78,30)(41,126,118,92)(42,127,119,93)(43,128,120,94)(44,121,113,95)(45,122,114,96)(46,123,115,89)(47,124,116,90)(48,125,117,91), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,123,61,93)(2,122,62,92)(3,121,63,91)(4,128,64,90)(5,127,57,89)(6,126,58,96)(7,125,59,95)(8,124,60,94)(9,104,84,50)(10,103,85,49)(11,102,86,56)(12,101,87,55)(13,100,88,54)(14,99,81,53)(15,98,82,52)(16,97,83,51)(17,38,75,109)(18,37,76,108)(19,36,77,107)(20,35,78,106)(21,34,79,105)(22,33,80,112)(23,40,73,111)(24,39,74,110)(25,46,67,119)(26,45,68,118)(27,44,69,117)(28,43,70,116)(29,42,71,115)(30,41,72,114)(31,48,65,113)(32,47,66,120) );
G=PermutationGroup([[(1,73,57,19),(2,74,58,20),(3,75,59,21),(4,76,60,22),(5,77,61,23),(6,78,62,24),(7,79,63,17),(8,80,64,18),(9,116,88,47),(10,117,81,48),(11,118,82,41),(12,119,83,42),(13,120,84,43),(14,113,85,44),(15,114,86,45),(16,115,87,46),(25,101,71,51),(26,102,72,52),(27,103,65,53),(28,104,66,54),(29,97,67,55),(30,98,68,56),(31,99,69,49),(32,100,70,50),(33,94,108,128),(34,95,109,121),(35,96,110,122),(36,89,111,123),(37,90,112,124),(38,91,105,125),(39,92,106,126),(40,93,107,127)], [(1,101,57,51),(2,102,58,52),(3,103,59,53),(4,104,60,54),(5,97,61,55),(6,98,62,56),(7,99,63,49),(8,100,64,50),(9,112,88,37),(10,105,81,38),(11,106,82,39),(12,107,83,40),(13,108,84,33),(14,109,85,34),(15,110,86,35),(16,111,87,36),(17,69,79,31),(18,70,80,32),(19,71,73,25),(20,72,74,26),(21,65,75,27),(22,66,76,28),(23,67,77,29),(24,68,78,30),(41,126,118,92),(42,127,119,93),(43,128,120,94),(44,121,113,95),(45,122,114,96),(46,123,115,89),(47,124,116,90),(48,125,117,91)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128)], [(1,123,61,93),(2,122,62,92),(3,121,63,91),(4,128,64,90),(5,127,57,89),(6,126,58,96),(7,125,59,95),(8,124,60,94),(9,104,84,50),(10,103,85,49),(11,102,86,56),(12,101,87,55),(13,100,88,54),(14,99,81,53),(15,98,82,52),(16,97,83,51),(17,38,75,109),(18,37,76,108),(19,36,77,107),(20,35,78,106),(21,34,79,105),(22,33,80,112),(23,40,73,111),(24,39,74,110),(25,46,67,119),(26,45,68,118),(27,44,69,117),(28,43,70,116),(29,42,71,115),(30,41,72,114),(31,48,65,113),(32,47,66,120)]])
Matrix representation of Q8.1Q16 ►in GL4(𝔽17) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 13 | 0 |
0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 16 | 0 |
14 | 3 | 0 | 0 |
14 | 14 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
16 | 10 | 0 | 0 |
10 | 1 | 0 | 0 |
0 | 0 | 0 | 8 |
0 | 0 | 2 | 0 |
G:=sub<GL(4,GF(17))| [1,0,0,0,0,1,0,0,0,0,13,0,0,0,0,4],[1,0,0,0,0,1,0,0,0,0,0,16,0,0,1,0],[14,14,0,0,3,14,0,0,0,0,1,0,0,0,0,1],[16,10,0,0,10,1,0,0,0,0,0,2,0,0,8,0] >;
Q8.1Q16 in GAP, Magma, Sage, TeX
Q_8._1Q_{16}
% in TeX
G:=Group("Q8.1Q16");
// GroupNames label
G:=SmallGroup(128,408);
// by ID
G=gap.SmallGroup(128,408);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,2,672,141,288,422,352,1123,136,2804,718,172]);
// Polycyclic
G:=Group<a,b,c,d|a^4=c^8=1,b^2=a^2,d^2=a^2*c^4,b*a*b^-1=d*a*d^-1=a^-1,a*c=c*a,b*c=c*b,d*b*d^-1=a^-1*b,d*c*d^-1=c^-1>;
// generators/relations
Export