p-group, metabelian, nilpotent (class 3), monomial
Aliases: D4.2Q16, C42.234C23, (C8×D4).7C2, C8⋊1C8⋊10C2, C4⋊C4.209D4, (C2×C8).317D4, C4.26(C2×Q16), (C2×D4).195D4, C4.44(C4○D8), (C4×C8).59C22, D4⋊2Q8.9C2, D4⋊Q8.6C2, C4.6Q16⋊5C2, C4.SD16⋊9C2, C4⋊Q8.57C22, C4.10D8⋊26C2, C4⋊C8.182C22, C4.92(C8⋊C22), (C4×D4).283C22, C2.14(D4.3D4), C2.11(D4.2D4), C2.10(C8.18D4), C22.195(C4⋊D4), (C2×C4).19(C4○D4), (C2×C4).1269(C2×D4), SmallGroup(128,415)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for D4.Q16
G = < a,b,c,d | a4=b2=c8=1, d2=c4, bab=dad-1=a-1, ac=ca, bc=cb, dbd-1=ab, dcd-1=a2c-1 >
Subgroups: 176 in 80 conjugacy classes, 34 normal (32 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, D4, D4, Q8, C23, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, C22×C4, C2×D4, C2×Q8, C4×C8, C22⋊C8, D4⋊C4, Q8⋊C4, C4⋊C8, C4.Q8, C2.D8, C4×D4, C4⋊Q8, C22×C8, C4.10D8, C4.6Q16, C8⋊1C8, C8×D4, D4⋊Q8, D4⋊2Q8, C4.SD16, D4.Q16
Quotients: C1, C2, C22, D4, C23, Q16, C2×D4, C4○D4, C4⋊D4, C2×Q16, C4○D8, C8⋊C22, D4.2D4, C8.18D4, D4.3D4, D4.Q16
Character table of D4.Q16
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 8I | 8J | 8K | 8L | 8M | 8N | |
size | 1 | 1 | 1 | 1 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 16 | 16 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | 2 | -2 | 2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | -2 | 2 | -2 | 0 | -2 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | -2 | 2 | -2 | 0 | -2 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | 2 | 2 | 2 | -2 | 2 | -2 | 2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | -2 | -2 | 2 | -2 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | -√2 | √2 | √2 | -√2 | √2 | -√2 | 0 | 0 | 0 | 0 | symplectic lifted from Q16, Schur index 2 |
ρ14 | 2 | 2 | -2 | -2 | 2 | -2 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | √2 | -√2 | -√2 | √2 | -√2 | √2 | 0 | 0 | 0 | 0 | symplectic lifted from Q16, Schur index 2 |
ρ15 | 2 | 2 | -2 | -2 | -2 | 2 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | √2 | -√2 | -√2 | -√2 | √2 | √2 | 0 | 0 | 0 | 0 | symplectic lifted from Q16, Schur index 2 |
ρ16 | 2 | 2 | -2 | -2 | -2 | 2 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | -√2 | √2 | √2 | √2 | -√2 | -√2 | 0 | 0 | 0 | 0 | symplectic lifted from Q16, Schur index 2 |
ρ17 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | -2i | 2i | 0 | 0 | 2i | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ18 | 2 | -2 | 2 | -2 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | -√2 | √-2 | √2 | complex lifted from C4○D8 |
ρ19 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 2i | -2i | 0 | 0 | -2i | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ20 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | -2 | 0 | 2 | 2i | 0 | -2i | 0 | 0 | -√2 | √2 | √2 | -√2 | -√-2 | √-2 | -√-2 | -√2 | √2 | √-2 | 0 | 0 | 0 | 0 | complex lifted from C4○D8 |
ρ21 | 2 | -2 | 2 | -2 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | √2 | √-2 | -√2 | complex lifted from C4○D8 |
ρ22 | 2 | -2 | 2 | -2 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | -√2 | -√-2 | √2 | complex lifted from C4○D8 |
ρ23 | 2 | -2 | 2 | -2 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | √2 | -√-2 | -√2 | complex lifted from C4○D8 |
ρ24 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | -2 | 0 | 2 | -2i | 0 | 2i | 0 | 0 | √2 | -√2 | -√2 | √2 | -√-2 | √-2 | -√-2 | √2 | -√2 | √-2 | 0 | 0 | 0 | 0 | complex lifted from C4○D8 |
ρ25 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | -2 | 0 | 2 | 2i | 0 | -2i | 0 | 0 | √2 | -√2 | -√2 | √2 | √-2 | -√-2 | √-2 | √2 | -√2 | -√-2 | 0 | 0 | 0 | 0 | complex lifted from C4○D8 |
ρ26 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | -2 | 0 | 2 | -2i | 0 | 2i | 0 | 0 | -√2 | √2 | √2 | -√2 | √-2 | -√-2 | √-2 | -√2 | √2 | -√-2 | 0 | 0 | 0 | 0 | complex lifted from C4○D8 |
ρ27 | 4 | -4 | 4 | -4 | 0 | 0 | 4 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
ρ28 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√-2 | 2√-2 | -2√-2 | -2√-2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from D4.3D4 |
ρ29 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√-2 | -2√-2 | 2√-2 | 2√-2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from D4.3D4 |
(1 50 41 35)(2 51 42 36)(3 52 43 37)(4 53 44 38)(5 54 45 39)(6 55 46 40)(7 56 47 33)(8 49 48 34)(9 21 25 62)(10 22 26 63)(11 23 27 64)(12 24 28 57)(13 17 29 58)(14 18 30 59)(15 19 31 60)(16 20 32 61)
(1 39)(2 40)(3 33)(4 34)(5 35)(6 36)(7 37)(8 38)(9 13)(10 14)(11 15)(12 16)(17 62)(18 63)(19 64)(20 57)(21 58)(22 59)(23 60)(24 61)(25 29)(26 30)(27 31)(28 32)(41 54)(42 55)(43 56)(44 49)(45 50)(46 51)(47 52)(48 53)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 64 5 60)(2 22 6 18)(3 62 7 58)(4 20 8 24)(9 33 13 37)(10 55 14 51)(11 39 15 35)(12 53 16 49)(17 43 21 47)(19 41 23 45)(25 56 29 52)(26 40 30 36)(27 54 31 50)(28 38 32 34)(42 63 46 59)(44 61 48 57)
G:=sub<Sym(64)| (1,50,41,35)(2,51,42,36)(3,52,43,37)(4,53,44,38)(5,54,45,39)(6,55,46,40)(7,56,47,33)(8,49,48,34)(9,21,25,62)(10,22,26,63)(11,23,27,64)(12,24,28,57)(13,17,29,58)(14,18,30,59)(15,19,31,60)(16,20,32,61), (1,39)(2,40)(3,33)(4,34)(5,35)(6,36)(7,37)(8,38)(9,13)(10,14)(11,15)(12,16)(17,62)(18,63)(19,64)(20,57)(21,58)(22,59)(23,60)(24,61)(25,29)(26,30)(27,31)(28,32)(41,54)(42,55)(43,56)(44,49)(45,50)(46,51)(47,52)(48,53), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,64,5,60)(2,22,6,18)(3,62,7,58)(4,20,8,24)(9,33,13,37)(10,55,14,51)(11,39,15,35)(12,53,16,49)(17,43,21,47)(19,41,23,45)(25,56,29,52)(26,40,30,36)(27,54,31,50)(28,38,32,34)(42,63,46,59)(44,61,48,57)>;
G:=Group( (1,50,41,35)(2,51,42,36)(3,52,43,37)(4,53,44,38)(5,54,45,39)(6,55,46,40)(7,56,47,33)(8,49,48,34)(9,21,25,62)(10,22,26,63)(11,23,27,64)(12,24,28,57)(13,17,29,58)(14,18,30,59)(15,19,31,60)(16,20,32,61), (1,39)(2,40)(3,33)(4,34)(5,35)(6,36)(7,37)(8,38)(9,13)(10,14)(11,15)(12,16)(17,62)(18,63)(19,64)(20,57)(21,58)(22,59)(23,60)(24,61)(25,29)(26,30)(27,31)(28,32)(41,54)(42,55)(43,56)(44,49)(45,50)(46,51)(47,52)(48,53), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,64,5,60)(2,22,6,18)(3,62,7,58)(4,20,8,24)(9,33,13,37)(10,55,14,51)(11,39,15,35)(12,53,16,49)(17,43,21,47)(19,41,23,45)(25,56,29,52)(26,40,30,36)(27,54,31,50)(28,38,32,34)(42,63,46,59)(44,61,48,57) );
G=PermutationGroup([[(1,50,41,35),(2,51,42,36),(3,52,43,37),(4,53,44,38),(5,54,45,39),(6,55,46,40),(7,56,47,33),(8,49,48,34),(9,21,25,62),(10,22,26,63),(11,23,27,64),(12,24,28,57),(13,17,29,58),(14,18,30,59),(15,19,31,60),(16,20,32,61)], [(1,39),(2,40),(3,33),(4,34),(5,35),(6,36),(7,37),(8,38),(9,13),(10,14),(11,15),(12,16),(17,62),(18,63),(19,64),(20,57),(21,58),(22,59),(23,60),(24,61),(25,29),(26,30),(27,31),(28,32),(41,54),(42,55),(43,56),(44,49),(45,50),(46,51),(47,52),(48,53)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,64,5,60),(2,22,6,18),(3,62,7,58),(4,20,8,24),(9,33,13,37),(10,55,14,51),(11,39,15,35),(12,53,16,49),(17,43,21,47),(19,41,23,45),(25,56,29,52),(26,40,30,36),(27,54,31,50),(28,38,32,34),(42,63,46,59),(44,61,48,57)]])
Matrix representation of D4.Q16 ►in GL4(𝔽17) generated by
16 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 16 | 0 |
1 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 |
2 | 0 | 0 | 0 |
0 | 9 | 0 | 0 |
0 | 0 | 13 | 0 |
0 | 0 | 0 | 13 |
0 | 1 | 0 | 0 |
16 | 0 | 0 | 0 |
0 | 0 | 14 | 3 |
0 | 0 | 3 | 3 |
G:=sub<GL(4,GF(17))| [16,0,0,0,0,16,0,0,0,0,0,16,0,0,1,0],[1,0,0,0,0,16,0,0,0,0,0,1,0,0,1,0],[2,0,0,0,0,9,0,0,0,0,13,0,0,0,0,13],[0,16,0,0,1,0,0,0,0,0,14,3,0,0,3,3] >;
D4.Q16 in GAP, Magma, Sage, TeX
D_4.Q_{16}
% in TeX
G:=Group("D4.Q16");
// GroupNames label
G:=SmallGroup(128,415);
// by ID
G=gap.SmallGroup(128,415);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,2,224,141,736,422,1123,136,2804,718,172]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^2=c^8=1,d^2=c^4,b*a*b=d*a*d^-1=a^-1,a*c=c*a,b*c=c*b,d*b*d^-1=a*b,d*c*d^-1=a^2*c^-1>;
// generators/relations
Export