Copied to
clipboard

G = (C2×C4)⋊6Q16order 128 = 27

1st semidirect product of C2×C4 and Q16 acting via Q16/C8=C2

p-group, metabelian, nilpotent (class 3), monomial

Aliases: (C2×C4)⋊6Q16, (C2×Q16)⋊7C4, C4.18(C4×D4), (C2×C8).244D4, C2.12(C4×Q16), C4.82(C4⋊D4), C8.19(C22⋊C4), C2.3(C4⋊Q16), C4.2(C4.4D4), C22.182(C4×D4), (C22×C4).559D4, C23.802(C2×D4), (C22×Q16).2C2, C22.40(C2×Q16), C2.5(C8.18D4), C2.4(C8.12D4), C22.76(C4○D8), C22.38(C41D4), (C22×C8).493C22, (C22×Q8).39C22, C22.144(C4⋊D4), (C2×C42).1076C22, (C22×C4).1409C23, C23.67C23.10C2, C2.21(C24.3C22), (C2×C4×C8).36C2, (C2×C8).172(C2×C4), C4.37(C2×C22⋊C4), (C2×Q8).95(C2×C4), (C2×C2.D8).11C2, (C2×C4).1354(C2×D4), (C2×C4⋊C4).90C22, (C2×Q8⋊C4).8C2, (C2×C4).600(C4○D4), (C2×C4).423(C22×C4), SmallGroup(128,701)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — (C2×C4)⋊6Q16
C1C2C22C2×C4C22×C4C22×C8C2×C4×C8 — (C2×C4)⋊6Q16
C1C2C2×C4 — (C2×C4)⋊6Q16
C1C23C2×C42 — (C2×C4)⋊6Q16
C1C2C2C22×C4 — (C2×C4)⋊6Q16

Generators and relations for (C2×C4)⋊6Q16
 G = < a,b,c,d | a2=b4=c8=1, d2=c4, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=ab-1, dcd-1=c-1 >

Subgroups: 292 in 156 conjugacy classes, 68 normal (26 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C8, C2×C4, C2×C4, C2×C4, Q8, C23, C42, C4⋊C4, C2×C8, C2×C8, Q16, C22×C4, C22×C4, C22×C4, C2×Q8, C2×Q8, C2.C42, C4×C8, Q8⋊C4, C2.D8, C2×C42, C2×C4⋊C4, C22×C8, C2×Q16, C2×Q16, C22×Q8, C23.67C23, C2×C4×C8, C2×Q8⋊C4, C2×C2.D8, C22×Q16, (C2×C4)⋊6Q16
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, Q16, C22×C4, C2×D4, C4○D4, C2×C22⋊C4, C4×D4, C4⋊D4, C4.4D4, C41D4, C2×Q16, C4○D8, C24.3C22, C4×Q16, C8.18D4, C4⋊Q16, C8.12D4, (C2×C4)⋊6Q16

Smallest permutation representation of (C2×C4)⋊6Q16
Regular action on 128 points
Generators in S128
(1 31)(2 32)(3 25)(4 26)(5 27)(6 28)(7 29)(8 30)(9 40)(10 33)(11 34)(12 35)(13 36)(14 37)(15 38)(16 39)(17 113)(18 114)(19 115)(20 116)(21 117)(22 118)(23 119)(24 120)(41 68)(42 69)(43 70)(44 71)(45 72)(46 65)(47 66)(48 67)(49 59)(50 60)(51 61)(52 62)(53 63)(54 64)(55 57)(56 58)(73 89)(74 90)(75 91)(76 92)(77 93)(78 94)(79 95)(80 96)(81 104)(82 97)(83 98)(84 99)(85 100)(86 101)(87 102)(88 103)(105 121)(106 122)(107 123)(108 124)(109 125)(110 126)(111 127)(112 128)
(1 70 37 50)(2 71 38 51)(3 72 39 52)(4 65 40 53)(5 66 33 54)(6 67 34 55)(7 68 35 56)(8 69 36 49)(9 63 26 46)(10 64 27 47)(11 57 28 48)(12 58 29 41)(13 59 30 42)(14 60 31 43)(15 61 32 44)(16 62 25 45)(17 95 106 86)(18 96 107 87)(19 89 108 88)(20 90 109 81)(21 91 110 82)(22 92 111 83)(23 93 112 84)(24 94 105 85)(73 124 103 115)(74 125 104 116)(75 126 97 117)(76 127 98 118)(77 128 99 119)(78 121 100 120)(79 122 101 113)(80 123 102 114)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)
(1 112 5 108)(2 111 6 107)(3 110 7 106)(4 109 8 105)(9 116 13 120)(10 115 14 119)(11 114 15 118)(12 113 16 117)(17 39 21 35)(18 38 22 34)(19 37 23 33)(20 36 24 40)(25 126 29 122)(26 125 30 121)(27 124 31 128)(28 123 32 127)(41 95 45 91)(42 94 46 90)(43 93 47 89)(44 92 48 96)(49 100 53 104)(50 99 54 103)(51 98 55 102)(52 97 56 101)(57 87 61 83)(58 86 62 82)(59 85 63 81)(60 84 64 88)(65 74 69 78)(66 73 70 77)(67 80 71 76)(68 79 72 75)

G:=sub<Sym(128)| (1,31)(2,32)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,40)(10,33)(11,34)(12,35)(13,36)(14,37)(15,38)(16,39)(17,113)(18,114)(19,115)(20,116)(21,117)(22,118)(23,119)(24,120)(41,68)(42,69)(43,70)(44,71)(45,72)(46,65)(47,66)(48,67)(49,59)(50,60)(51,61)(52,62)(53,63)(54,64)(55,57)(56,58)(73,89)(74,90)(75,91)(76,92)(77,93)(78,94)(79,95)(80,96)(81,104)(82,97)(83,98)(84,99)(85,100)(86,101)(87,102)(88,103)(105,121)(106,122)(107,123)(108,124)(109,125)(110,126)(111,127)(112,128), (1,70,37,50)(2,71,38,51)(3,72,39,52)(4,65,40,53)(5,66,33,54)(6,67,34,55)(7,68,35,56)(8,69,36,49)(9,63,26,46)(10,64,27,47)(11,57,28,48)(12,58,29,41)(13,59,30,42)(14,60,31,43)(15,61,32,44)(16,62,25,45)(17,95,106,86)(18,96,107,87)(19,89,108,88)(20,90,109,81)(21,91,110,82)(22,92,111,83)(23,93,112,84)(24,94,105,85)(73,124,103,115)(74,125,104,116)(75,126,97,117)(76,127,98,118)(77,128,99,119)(78,121,100,120)(79,122,101,113)(80,123,102,114), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,112,5,108)(2,111,6,107)(3,110,7,106)(4,109,8,105)(9,116,13,120)(10,115,14,119)(11,114,15,118)(12,113,16,117)(17,39,21,35)(18,38,22,34)(19,37,23,33)(20,36,24,40)(25,126,29,122)(26,125,30,121)(27,124,31,128)(28,123,32,127)(41,95,45,91)(42,94,46,90)(43,93,47,89)(44,92,48,96)(49,100,53,104)(50,99,54,103)(51,98,55,102)(52,97,56,101)(57,87,61,83)(58,86,62,82)(59,85,63,81)(60,84,64,88)(65,74,69,78)(66,73,70,77)(67,80,71,76)(68,79,72,75)>;

G:=Group( (1,31)(2,32)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,40)(10,33)(11,34)(12,35)(13,36)(14,37)(15,38)(16,39)(17,113)(18,114)(19,115)(20,116)(21,117)(22,118)(23,119)(24,120)(41,68)(42,69)(43,70)(44,71)(45,72)(46,65)(47,66)(48,67)(49,59)(50,60)(51,61)(52,62)(53,63)(54,64)(55,57)(56,58)(73,89)(74,90)(75,91)(76,92)(77,93)(78,94)(79,95)(80,96)(81,104)(82,97)(83,98)(84,99)(85,100)(86,101)(87,102)(88,103)(105,121)(106,122)(107,123)(108,124)(109,125)(110,126)(111,127)(112,128), (1,70,37,50)(2,71,38,51)(3,72,39,52)(4,65,40,53)(5,66,33,54)(6,67,34,55)(7,68,35,56)(8,69,36,49)(9,63,26,46)(10,64,27,47)(11,57,28,48)(12,58,29,41)(13,59,30,42)(14,60,31,43)(15,61,32,44)(16,62,25,45)(17,95,106,86)(18,96,107,87)(19,89,108,88)(20,90,109,81)(21,91,110,82)(22,92,111,83)(23,93,112,84)(24,94,105,85)(73,124,103,115)(74,125,104,116)(75,126,97,117)(76,127,98,118)(77,128,99,119)(78,121,100,120)(79,122,101,113)(80,123,102,114), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,112,5,108)(2,111,6,107)(3,110,7,106)(4,109,8,105)(9,116,13,120)(10,115,14,119)(11,114,15,118)(12,113,16,117)(17,39,21,35)(18,38,22,34)(19,37,23,33)(20,36,24,40)(25,126,29,122)(26,125,30,121)(27,124,31,128)(28,123,32,127)(41,95,45,91)(42,94,46,90)(43,93,47,89)(44,92,48,96)(49,100,53,104)(50,99,54,103)(51,98,55,102)(52,97,56,101)(57,87,61,83)(58,86,62,82)(59,85,63,81)(60,84,64,88)(65,74,69,78)(66,73,70,77)(67,80,71,76)(68,79,72,75) );

G=PermutationGroup([[(1,31),(2,32),(3,25),(4,26),(5,27),(6,28),(7,29),(8,30),(9,40),(10,33),(11,34),(12,35),(13,36),(14,37),(15,38),(16,39),(17,113),(18,114),(19,115),(20,116),(21,117),(22,118),(23,119),(24,120),(41,68),(42,69),(43,70),(44,71),(45,72),(46,65),(47,66),(48,67),(49,59),(50,60),(51,61),(52,62),(53,63),(54,64),(55,57),(56,58),(73,89),(74,90),(75,91),(76,92),(77,93),(78,94),(79,95),(80,96),(81,104),(82,97),(83,98),(84,99),(85,100),(86,101),(87,102),(88,103),(105,121),(106,122),(107,123),(108,124),(109,125),(110,126),(111,127),(112,128)], [(1,70,37,50),(2,71,38,51),(3,72,39,52),(4,65,40,53),(5,66,33,54),(6,67,34,55),(7,68,35,56),(8,69,36,49),(9,63,26,46),(10,64,27,47),(11,57,28,48),(12,58,29,41),(13,59,30,42),(14,60,31,43),(15,61,32,44),(16,62,25,45),(17,95,106,86),(18,96,107,87),(19,89,108,88),(20,90,109,81),(21,91,110,82),(22,92,111,83),(23,93,112,84),(24,94,105,85),(73,124,103,115),(74,125,104,116),(75,126,97,117),(76,127,98,118),(77,128,99,119),(78,121,100,120),(79,122,101,113),(80,123,102,114)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128)], [(1,112,5,108),(2,111,6,107),(3,110,7,106),(4,109,8,105),(9,116,13,120),(10,115,14,119),(11,114,15,118),(12,113,16,117),(17,39,21,35),(18,38,22,34),(19,37,23,33),(20,36,24,40),(25,126,29,122),(26,125,30,121),(27,124,31,128),(28,123,32,127),(41,95,45,91),(42,94,46,90),(43,93,47,89),(44,92,48,96),(49,100,53,104),(50,99,54,103),(51,98,55,102),(52,97,56,101),(57,87,61,83),(58,86,62,82),(59,85,63,81),(60,84,64,88),(65,74,69,78),(66,73,70,77),(67,80,71,76),(68,79,72,75)]])

44 conjugacy classes

class 1 2A···2G4A···4L4M···4T8A···8P
order12···24···44···48···8
size11···12···28···82···2

44 irreducible representations

dim111111122222
type++++++++-
imageC1C2C2C2C2C2C4D4D4Q16C4○D4C4○D8
kernel(C2×C4)⋊6Q16C23.67C23C2×C4×C8C2×Q8⋊C4C2×C2.D8C22×Q16C2×Q16C2×C8C22×C4C2×C4C2×C4C22
# reps121211862848

Matrix representation of (C2×C4)⋊6Q16 in GL5(𝔽17)

160000
01000
00100
000160
000016
,
40000
00100
016000
00040
00004
,
10000
00100
016000
000314
00033
,
10000
0141400
014300
000101
00017

G:=sub<GL(5,GF(17))| [16,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,16,0,0,0,0,0,16],[4,0,0,0,0,0,0,16,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,4],[1,0,0,0,0,0,0,16,0,0,0,1,0,0,0,0,0,0,3,3,0,0,0,14,3],[1,0,0,0,0,0,14,14,0,0,0,14,3,0,0,0,0,0,10,1,0,0,0,1,7] >;

(C2×C4)⋊6Q16 in GAP, Magma, Sage, TeX

(C_2\times C_4)\rtimes_6Q_{16}
% in TeX

G:=Group("(C2xC4):6Q16");
// GroupNames label

G:=SmallGroup(128,701);
// by ID

G=gap.SmallGroup(128,701);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,2,-2,224,141,288,422,436,2019,248,2804,172]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^4=c^8=1,d^2=c^4,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=a*b^-1,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽