p-group, metabelian, nilpotent (class 3), monomial
Aliases: C8.18D4, C22⋊1Q16, C23.28D4, C2.D8⋊3C2, (C2×Q16)⋊4C2, (C2×C4).56D4, C4.55(C2×D4), C2.6(C2×Q16), Q8⋊C4⋊2C2, C4.9(C4○D4), C4⋊C4.7C22, (C22×C8).9C2, C22⋊Q8.3C2, C2.12(C4○D8), (C2×C4).95C23, (C2×C8).77C22, C22.91(C2×D4), C2.19(C4⋊D4), (C2×Q8).12C22, (C22×C4).119C22, SmallGroup(64,148)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C8.18D4
G = < a,b,c | a8=b4=1, c2=a4, bab-1=cac-1=a-1, cbc-1=a4b-1 >
Subgroups: 93 in 57 conjugacy classes, 29 normal (17 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C8, C8, C2×C4, C2×C4, Q8, C23, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, Q16, C22×C4, C2×Q8, Q8⋊C4, C2.D8, C22⋊Q8, C22×C8, C2×Q16, C8.18D4
Quotients: C1, C2, C22, D4, C23, Q16, C2×D4, C4○D4, C4⋊D4, C2×Q16, C4○D8, C8.18D4
Character table of C8.18D4
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 8 | 8 | 8 | 8 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 2 | 0 | -2 | -2 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | -2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | -2 | 0 | 2 | 2 | orthogonal lifted from D4 |
ρ13 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | -√2 | √2 | √2 | -√2 | √2 | symplectic lifted from Q16, Schur index 2 |
ρ14 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | √2 | -√2 | -√2 | √2 | symplectic lifted from Q16, Schur index 2 |
ρ15 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | √2 | -√2 | -√2 | √2 | -√2 | symplectic lifted from Q16, Schur index 2 |
ρ16 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | -√2 | √2 | √2 | -√2 | symplectic lifted from Q16, Schur index 2 |
ρ17 | 2 | 2 | -2 | -2 | 0 | 0 | -2i | 0 | 0 | 2i | 0 | 0 | 0 | 0 | -√-2 | √-2 | √2 | √-2 | -√2 | -√-2 | -√2 | √2 | complex lifted from C4○D8 |
ρ18 | 2 | 2 | -2 | -2 | 0 | 0 | 2i | 0 | 0 | -2i | 0 | 0 | 0 | 0 | -√-2 | √-2 | -√2 | √-2 | √2 | -√-2 | √2 | -√2 | complex lifted from C4○D8 |
ρ19 | 2 | 2 | -2 | -2 | 0 | 0 | 2i | 0 | 0 | -2i | 0 | 0 | 0 | 0 | √-2 | -√-2 | √2 | -√-2 | -√2 | √-2 | -√2 | √2 | complex lifted from C4○D8 |
ρ20 | 2 | 2 | -2 | -2 | 0 | 0 | -2i | 0 | 0 | 2i | 0 | 0 | 0 | 0 | √-2 | -√-2 | -√2 | -√-2 | √2 | √-2 | √2 | -√2 | complex lifted from C4○D8 |
ρ21 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | -2i | -2i | 0 | 2i | 0 | 2i | 0 | 0 | complex lifted from C4○D4 |
ρ22 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 2i | 2i | 0 | -2i | 0 | -2i | 0 | 0 | complex lifted from C4○D4 |
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 26 19 12)(2 25 20 11)(3 32 21 10)(4 31 22 9)(5 30 23 16)(6 29 24 15)(7 28 17 14)(8 27 18 13)
(1 16 5 12)(2 15 6 11)(3 14 7 10)(4 13 8 9)(17 32 21 28)(18 31 22 27)(19 30 23 26)(20 29 24 25)
G:=sub<Sym(32)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,26,19,12)(2,25,20,11)(3,32,21,10)(4,31,22,9)(5,30,23,16)(6,29,24,15)(7,28,17,14)(8,27,18,13), (1,16,5,12)(2,15,6,11)(3,14,7,10)(4,13,8,9)(17,32,21,28)(18,31,22,27)(19,30,23,26)(20,29,24,25)>;
G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,26,19,12)(2,25,20,11)(3,32,21,10)(4,31,22,9)(5,30,23,16)(6,29,24,15)(7,28,17,14)(8,27,18,13), (1,16,5,12)(2,15,6,11)(3,14,7,10)(4,13,8,9)(17,32,21,28)(18,31,22,27)(19,30,23,26)(20,29,24,25) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,26,19,12),(2,25,20,11),(3,32,21,10),(4,31,22,9),(5,30,23,16),(6,29,24,15),(7,28,17,14),(8,27,18,13)], [(1,16,5,12),(2,15,6,11),(3,14,7,10),(4,13,8,9),(17,32,21,28),(18,31,22,27),(19,30,23,26),(20,29,24,25)]])
C8.18D4 is a maximal subgroup of
C23.32D8 C23.13SD16 D8.9D4 Q16.8D4 D8.10D4 C16⋊8D4 C16⋊2D4 C23.50D8 C23.51D8 C23.20D8 C24.144D4 M4(2)⋊15D4 C8.D4⋊C2 (C2×C8)⋊14D4 M4(2)⋊17D4 C42.308D4 C42.387C23 C42.389C23 C42.390C23 C42.258D4 C23⋊3Q16 C24.123D4 C24.124D4 C4.162+ 1+4 C4.172+ 1+4 C4.182+ 1+4 C42.296D4 C42.298D4 C42.25C23 C42.28C23 C42.29C23 SD16⋊6D4 SD16⋊8D4 D8⋊12D4 D8⋊13D4 Q16⋊12D4 D4×Q16 C42.461C23 C42.465C23 C42.467C23 C42.47C23 C42.48C23 C42.49C23 C42.50C23 C42.485C23 C42.491C23 C42.58C23 C42.63C23 A4⋊Q16
D2p⋊Q16: D4⋊5Q16 D4⋊6Q16 D6⋊1Q16 D6⋊2Q16 D6⋊3Q16 D10⋊Q16 D10⋊2Q16 D10⋊3Q16 ...
C8p.D4: C16.19D4 C16.D4 C24.82D4 C40.82D4 C56.82D4 ...
(C2×C2p)⋊Q16: C42.367D4 C42.297D4 C3⋊C8.29D4 (C2×C10)⋊Q16 C7⋊C8.29D4 ...
C8.18D4 is a maximal quotient of
D4.1Q16 Q8.1Q16 C23.22D8 C24.135D4 C2.(C8⋊8D4) C8⋊5(C4⋊C4) C24.86D4 C24.88D4 (C2×C4).21Q16
D2p⋊Q16: C8.28D8 D6⋊1Q16 D6⋊2Q16 D6⋊3Q16 D10⋊Q16 D10⋊2Q16 D10⋊3Q16 D14⋊Q16 ...
(C2×C2p)⋊Q16: (C2×C4)⋊6Q16 (C2×C4)⋊3Q16 C3⋊C8.29D4 C24.82D4 (C2×C10)⋊Q16 C40.82D4 C7⋊C8.29D4 C56.82D4 ...
C2.(D4.pD4): Q8⋊1Q16 D4.Q16 Q8.2Q16 C23⋊2Q16 (C2×C8).52D4 ...
Matrix representation of C8.18D4 ►in GL4(𝔽17) generated by
15 | 0 | 0 | 0 |
0 | 8 | 0 | 0 |
0 | 0 | 8 | 0 |
0 | 0 | 0 | 15 |
0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 16 | 0 |
0 | 1 | 0 | 0 |
16 | 0 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 16 | 0 |
G:=sub<GL(4,GF(17))| [15,0,0,0,0,8,0,0,0,0,8,0,0,0,0,15],[0,1,0,0,1,0,0,0,0,0,0,16,0,0,1,0],[0,16,0,0,1,0,0,0,0,0,0,16,0,0,1,0] >;
C8.18D4 in GAP, Magma, Sage, TeX
C_8._{18}D_4
% in TeX
G:=Group("C8.18D4");
// GroupNames label
G:=SmallGroup(64,148);
// by ID
G=gap.SmallGroup(64,148);
# by ID
G:=PCGroup([6,-2,2,2,-2,2,-2,192,121,247,362,963,117]);
// Polycyclic
G:=Group<a,b,c|a^8=b^4=1,c^2=a^4,b*a*b^-1=c*a*c^-1=a^-1,c*b*c^-1=a^4*b^-1>;
// generators/relations
Export