Copied to
clipboard

G = C8.28D8order 128 = 27

5th non-split extension by C8 of D8 acting via D8/D4=C2

p-group, metabelian, nilpotent (class 3), monomial

Aliases: D41Q16, C8.28D8, C42.220C23, C81C84C2, (C8×D4).4C2, C4.60(C2×D8), C4⋊C4.195D4, C4⋊Q163C2, (C2×C8).341D4, C4.23(C2×Q16), (C2×D4).188D4, C4.40(C4○D8), C4.10D85C2, C2.8(C4⋊D8), C4⋊C8.20C22, (C4×C8).51C22, D4⋊Q8.4C2, C4⋊Q8.43C22, C4.118(C8⋊C22), C2.6(D4.5D4), C2.6(C8.18D4), (C4×D4).276C22, C22.181(C4⋊D4), (C2×C4).5(C4○D4), (C2×C4).1255(C2×D4), SmallGroup(128,401)

Series: Derived Chief Lower central Upper central Jennings

C1C42 — C8.28D8
C1C2C22C2×C4C42C4×D4C8×D4 — C8.28D8
C1C22C42 — C8.28D8
C1C22C42 — C8.28D8
C1C22C22C42 — C8.28D8

Generators and relations for C8.28D8
 G = < a,b,c | a8=b8=1, c2=a4, bab-1=cac-1=a-1, cbc-1=a4b-1 >

Subgroups: 192 in 86 conjugacy classes, 36 normal (24 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C8, C2×C4, C2×C4, D4, D4, Q8, C23, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, Q16, C22×C4, C2×D4, C2×Q8, C4×C8, C22⋊C8, D4⋊C4, C4⋊C8, C4⋊C8, C2.D8, C4×D4, C4⋊Q8, C22×C8, C2×Q16, C4.10D8, C81C8, C8×D4, D4⋊Q8, C4⋊Q16, C8.28D8
Quotients: C1, C2, C22, D4, C23, D8, Q16, C2×D4, C4○D4, C4⋊D4, C2×D8, C2×Q16, C4○D8, C8⋊C22, C4⋊D8, C8.18D4, D4.5D4, C8.28D8

Character table of C8.28D8

 class 12A2B2C2D2E4A4B4C4D4E4F4G4H4I8A8B8C8D8E8F8G8H8I8J8K8L8M8N
 size 1111442222444161622224444448888
ρ111111111111111111111111111111    trivial
ρ21111-1-11111-11-11-1-1-1-1-1111-1-111-11-1    linear of order 2
ρ31111-1-11111-11-1-1-11111-1-1-111-11111    linear of order 2
ρ41111111111111-11-1-1-1-1-1-1-1-1-1-11-11-1    linear of order 2
ρ511111111111111-1-1-1-1-1-1-1-1-1-1-1-11-11    linear of order 2
ρ61111-1-11111-11-1111111-1-1-111-1-1-1-1-1    linear of order 2
ρ71111-1-11111-11-1-11-1-1-1-1111-1-11-11-11    linear of order 2
ρ81111111111111-1-11111111111-1-1-1-1    linear of order 2
ρ92222-2-2-22-222-220000000000000000    orthogonal lifted from D4
ρ102222002-22-20-20002222000-2-200000    orthogonal lifted from D4
ρ112222002-22-20-2000-2-2-2-20002200000    orthogonal lifted from D4
ρ12222222-22-22-2-2-20000000000000000    orthogonal lifted from D4
ρ132-22-200-202000000-22-220000002-2-22    orthogonal lifted from D8
ρ142-22-200-2020000002-22-200000022-2-2    orthogonal lifted from D8
ρ152-22-200-202000000-22-22000000-222-2    orthogonal lifted from D8
ρ162-22-200-2020000002-22-2000000-2-222    orthogonal lifted from D8
ρ1722-2-2-22020-2000002-2-222-2-2-2220000    symplectic lifted from Q16, Schur index 2
ρ1822-2-22-2020-2000002-2-22-222-22-20000    symplectic lifted from Q16, Schur index 2
ρ1922-2-2-22020-200000-222-2-2222-2-20000    symplectic lifted from Q16, Schur index 2
ρ2022-2-22-2020-200000-222-22-2-22-220000    symplectic lifted from Q16, Schur index 2
ρ21222200-2-2-2-2020000000-2i-2i2i002i0000    complex lifted from C4○D4
ρ2222-2-2000-202-2i02i002-2-22--2-2--22-2-20000    complex lifted from C4○D8
ρ23222200-2-2-2-20200000002i2i-2i00-2i0000    complex lifted from C4○D4
ρ2422-2-2000-2022i0-2i00-222-2--2-2--2-22-20000    complex lifted from C4○D8
ρ2522-2-2000-2022i0-2i002-2-22-2--2-22-2--20000    complex lifted from C4○D8
ρ2622-2-2000-202-2i02i00-222-2-2--2-2-22--20000    complex lifted from C4○D8
ρ274-44-40040-400000000000000000000    orthogonal lifted from C8⋊C22
ρ284-4-44000000000002222-22-220000000000    symplectic lifted from D4.5D4, Schur index 2
ρ294-4-4400000000000-22-2222220000000000    symplectic lifted from D4.5D4, Schur index 2

Smallest permutation representation of C8.28D8
On 64 points
Generators in S64
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 26 51 20 47 14 39 62)(2 25 52 19 48 13 40 61)(3 32 53 18 41 12 33 60)(4 31 54 17 42 11 34 59)(5 30 55 24 43 10 35 58)(6 29 56 23 44 9 36 57)(7 28 49 22 45 16 37 64)(8 27 50 21 46 15 38 63)
(1 58 5 62)(2 57 6 61)(3 64 7 60)(4 63 8 59)(9 56 13 52)(10 55 14 51)(11 54 15 50)(12 53 16 49)(17 42 21 46)(18 41 22 45)(19 48 23 44)(20 47 24 43)(25 40 29 36)(26 39 30 35)(27 38 31 34)(28 37 32 33)

G:=sub<Sym(64)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,26,51,20,47,14,39,62)(2,25,52,19,48,13,40,61)(3,32,53,18,41,12,33,60)(4,31,54,17,42,11,34,59)(5,30,55,24,43,10,35,58)(6,29,56,23,44,9,36,57)(7,28,49,22,45,16,37,64)(8,27,50,21,46,15,38,63), (1,58,5,62)(2,57,6,61)(3,64,7,60)(4,63,8,59)(9,56,13,52)(10,55,14,51)(11,54,15,50)(12,53,16,49)(17,42,21,46)(18,41,22,45)(19,48,23,44)(20,47,24,43)(25,40,29,36)(26,39,30,35)(27,38,31,34)(28,37,32,33)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,26,51,20,47,14,39,62)(2,25,52,19,48,13,40,61)(3,32,53,18,41,12,33,60)(4,31,54,17,42,11,34,59)(5,30,55,24,43,10,35,58)(6,29,56,23,44,9,36,57)(7,28,49,22,45,16,37,64)(8,27,50,21,46,15,38,63), (1,58,5,62)(2,57,6,61)(3,64,7,60)(4,63,8,59)(9,56,13,52)(10,55,14,51)(11,54,15,50)(12,53,16,49)(17,42,21,46)(18,41,22,45)(19,48,23,44)(20,47,24,43)(25,40,29,36)(26,39,30,35)(27,38,31,34)(28,37,32,33) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,26,51,20,47,14,39,62),(2,25,52,19,48,13,40,61),(3,32,53,18,41,12,33,60),(4,31,54,17,42,11,34,59),(5,30,55,24,43,10,35,58),(6,29,56,23,44,9,36,57),(7,28,49,22,45,16,37,64),(8,27,50,21,46,15,38,63)], [(1,58,5,62),(2,57,6,61),(3,64,7,60),(4,63,8,59),(9,56,13,52),(10,55,14,51),(11,54,15,50),(12,53,16,49),(17,42,21,46),(18,41,22,45),(19,48,23,44),(20,47,24,43),(25,40,29,36),(26,39,30,35),(27,38,31,34),(28,37,32,33)]])

Matrix representation of C8.28D8 in GL4(𝔽17) generated by

8000
01500
00160
00016
,
0100
1000
001111
0030
,
0100
16000
001111
0036
G:=sub<GL(4,GF(17))| [8,0,0,0,0,15,0,0,0,0,16,0,0,0,0,16],[0,1,0,0,1,0,0,0,0,0,11,3,0,0,11,0],[0,16,0,0,1,0,0,0,0,0,11,3,0,0,11,6] >;

C8.28D8 in GAP, Magma, Sage, TeX

C_8._{28}D_8
% in TeX

G:=Group("C8.28D8");
// GroupNames label

G:=SmallGroup(128,401);
// by ID

G=gap.SmallGroup(128,401);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,2,224,141,288,422,1123,136,2804,718,172]);
// Polycyclic

G:=Group<a,b,c|a^8=b^8=1,c^2=a^4,b*a*b^-1=c*a*c^-1=a^-1,c*b*c^-1=a^4*b^-1>;
// generators/relations

Export

Character table of C8.28D8 in TeX

׿
×
𝔽