p-group, metabelian, nilpotent (class 3), monomial
Aliases: D4⋊1Q16, C8.28D8, C42.220C23, C8⋊1C8⋊4C2, (C8×D4).4C2, C4.60(C2×D8), C4⋊C4.195D4, C4⋊Q16⋊3C2, (C2×C8).341D4, C4.23(C2×Q16), (C2×D4).188D4, C4.40(C4○D8), C4.10D8⋊5C2, C2.8(C4⋊D8), C4⋊C8.20C22, (C4×C8).51C22, D4⋊Q8.4C2, C4⋊Q8.43C22, C4.118(C8⋊C22), C2.6(D4.5D4), C2.6(C8.18D4), (C4×D4).276C22, C22.181(C4⋊D4), (C2×C4).5(C4○D4), (C2×C4).1255(C2×D4), SmallGroup(128,401)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C8.28D8
G = < a,b,c | a8=b8=1, c2=a4, bab-1=cac-1=a-1, cbc-1=a4b-1 >
Subgroups: 192 in 86 conjugacy classes, 36 normal (24 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C8, C2×C4, C2×C4, D4, D4, Q8, C23, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, Q16, C22×C4, C2×D4, C2×Q8, C4×C8, C22⋊C8, D4⋊C4, C4⋊C8, C4⋊C8, C2.D8, C4×D4, C4⋊Q8, C22×C8, C2×Q16, C4.10D8, C8⋊1C8, C8×D4, D4⋊Q8, C4⋊Q16, C8.28D8
Quotients: C1, C2, C22, D4, C23, D8, Q16, C2×D4, C4○D4, C4⋊D4, C2×D8, C2×Q16, C4○D8, C8⋊C22, C4⋊D8, C8.18D4, D4.5D4, C8.28D8
Character table of C8.28D8
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 8I | 8J | 8K | 8L | 8M | 8N | |
size | 1 | 1 | 1 | 1 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 16 | 16 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | 2 | -2 | 2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | -2 | 2 | -2 | 0 | -2 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | -2 | 2 | -2 | 0 | -2 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | 2 | 2 | 2 | -2 | 2 | -2 | 2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | -2 | 2 | -2 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | orthogonal lifted from D8 |
ρ14 | 2 | -2 | 2 | -2 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | orthogonal lifted from D8 |
ρ15 | 2 | -2 | 2 | -2 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | orthogonal lifted from D8 |
ρ16 | 2 | -2 | 2 | -2 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | orthogonal lifted from D8 |
ρ17 | 2 | 2 | -2 | -2 | -2 | 2 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | √2 | -√2 | -√2 | -√2 | √2 | √2 | 0 | 0 | 0 | 0 | symplectic lifted from Q16, Schur index 2 |
ρ18 | 2 | 2 | -2 | -2 | 2 | -2 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | -√2 | √2 | √2 | -√2 | √2 | -√2 | 0 | 0 | 0 | 0 | symplectic lifted from Q16, Schur index 2 |
ρ19 | 2 | 2 | -2 | -2 | -2 | 2 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | -√2 | √2 | √2 | √2 | -√2 | -√2 | 0 | 0 | 0 | 0 | symplectic lifted from Q16, Schur index 2 |
ρ20 | 2 | 2 | -2 | -2 | 2 | -2 | 0 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | √2 | -√2 | -√2 | √2 | -√2 | √2 | 0 | 0 | 0 | 0 | symplectic lifted from Q16, Schur index 2 |
ρ21 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | -2i | 2i | 0 | 0 | 2i | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ22 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | -2 | 0 | 2 | -2i | 0 | 2i | 0 | 0 | √2 | -√2 | -√2 | √2 | -√-2 | √-2 | -√-2 | √2 | -√2 | √-2 | 0 | 0 | 0 | 0 | complex lifted from C4○D8 |
ρ23 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 2i | -2i | 0 | 0 | -2i | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ24 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | -2 | 0 | 2 | 2i | 0 | -2i | 0 | 0 | -√2 | √2 | √2 | -√2 | -√-2 | √-2 | -√-2 | -√2 | √2 | √-2 | 0 | 0 | 0 | 0 | complex lifted from C4○D8 |
ρ25 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | -2 | 0 | 2 | 2i | 0 | -2i | 0 | 0 | √2 | -√2 | -√2 | √2 | √-2 | -√-2 | √-2 | √2 | -√2 | -√-2 | 0 | 0 | 0 | 0 | complex lifted from C4○D8 |
ρ26 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | -2 | 0 | 2 | -2i | 0 | 2i | 0 | 0 | -√2 | √2 | √2 | -√2 | √-2 | -√-2 | √-2 | -√2 | √2 | -√-2 | 0 | 0 | 0 | 0 | complex lifted from C4○D8 |
ρ27 | 4 | -4 | 4 | -4 | 0 | 0 | 4 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
ρ28 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√2 | 2√2 | -2√2 | -2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from D4.5D4, Schur index 2 |
ρ29 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√2 | -2√2 | 2√2 | 2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from D4.5D4, Schur index 2 |
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 26 51 20 47 14 39 62)(2 25 52 19 48 13 40 61)(3 32 53 18 41 12 33 60)(4 31 54 17 42 11 34 59)(5 30 55 24 43 10 35 58)(6 29 56 23 44 9 36 57)(7 28 49 22 45 16 37 64)(8 27 50 21 46 15 38 63)
(1 58 5 62)(2 57 6 61)(3 64 7 60)(4 63 8 59)(9 56 13 52)(10 55 14 51)(11 54 15 50)(12 53 16 49)(17 42 21 46)(18 41 22 45)(19 48 23 44)(20 47 24 43)(25 40 29 36)(26 39 30 35)(27 38 31 34)(28 37 32 33)
G:=sub<Sym(64)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,26,51,20,47,14,39,62)(2,25,52,19,48,13,40,61)(3,32,53,18,41,12,33,60)(4,31,54,17,42,11,34,59)(5,30,55,24,43,10,35,58)(6,29,56,23,44,9,36,57)(7,28,49,22,45,16,37,64)(8,27,50,21,46,15,38,63), (1,58,5,62)(2,57,6,61)(3,64,7,60)(4,63,8,59)(9,56,13,52)(10,55,14,51)(11,54,15,50)(12,53,16,49)(17,42,21,46)(18,41,22,45)(19,48,23,44)(20,47,24,43)(25,40,29,36)(26,39,30,35)(27,38,31,34)(28,37,32,33)>;
G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,26,51,20,47,14,39,62)(2,25,52,19,48,13,40,61)(3,32,53,18,41,12,33,60)(4,31,54,17,42,11,34,59)(5,30,55,24,43,10,35,58)(6,29,56,23,44,9,36,57)(7,28,49,22,45,16,37,64)(8,27,50,21,46,15,38,63), (1,58,5,62)(2,57,6,61)(3,64,7,60)(4,63,8,59)(9,56,13,52)(10,55,14,51)(11,54,15,50)(12,53,16,49)(17,42,21,46)(18,41,22,45)(19,48,23,44)(20,47,24,43)(25,40,29,36)(26,39,30,35)(27,38,31,34)(28,37,32,33) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,26,51,20,47,14,39,62),(2,25,52,19,48,13,40,61),(3,32,53,18,41,12,33,60),(4,31,54,17,42,11,34,59),(5,30,55,24,43,10,35,58),(6,29,56,23,44,9,36,57),(7,28,49,22,45,16,37,64),(8,27,50,21,46,15,38,63)], [(1,58,5,62),(2,57,6,61),(3,64,7,60),(4,63,8,59),(9,56,13,52),(10,55,14,51),(11,54,15,50),(12,53,16,49),(17,42,21,46),(18,41,22,45),(19,48,23,44),(20,47,24,43),(25,40,29,36),(26,39,30,35),(27,38,31,34),(28,37,32,33)]])
Matrix representation of C8.28D8 ►in GL4(𝔽17) generated by
8 | 0 | 0 | 0 |
0 | 15 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 0 | 16 |
0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 11 | 11 |
0 | 0 | 3 | 0 |
0 | 1 | 0 | 0 |
16 | 0 | 0 | 0 |
0 | 0 | 11 | 11 |
0 | 0 | 3 | 6 |
G:=sub<GL(4,GF(17))| [8,0,0,0,0,15,0,0,0,0,16,0,0,0,0,16],[0,1,0,0,1,0,0,0,0,0,11,3,0,0,11,0],[0,16,0,0,1,0,0,0,0,0,11,3,0,0,11,6] >;
C8.28D8 in GAP, Magma, Sage, TeX
C_8._{28}D_8
% in TeX
G:=Group("C8.28D8");
// GroupNames label
G:=SmallGroup(128,401);
// by ID
G=gap.SmallGroup(128,401);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,2,224,141,288,422,1123,136,2804,718,172]);
// Polycyclic
G:=Group<a,b,c|a^8=b^8=1,c^2=a^4,b*a*b^-1=c*a*c^-1=a^-1,c*b*c^-1=a^4*b^-1>;
// generators/relations
Export