extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×C4.Q8)⋊1C2 = C24.67D4 | φ: C2/C1 → C2 ⊆ Out C2×C4.Q8 | 64 | | (C2xC4.Q8):1C2 | 128,541 |
(C2×C4.Q8)⋊2C2 = C4○D4.4Q8 | φ: C2/C1 → C2 ⊆ Out C2×C4.Q8 | 64 | | (C2xC4.Q8):2C2 | 128,547 |
(C2×C4.Q8)⋊3C2 = (C2×D8)⋊10C4 | φ: C2/C1 → C2 ⊆ Out C2×C4.Q8 | 64 | | (C2xC4.Q8):3C2 | 128,704 |
(C2×C4.Q8)⋊4C2 = C2×D8⋊2C4 | φ: C2/C1 → C2 ⊆ Out C2×C4.Q8 | 32 | | (C2xC4.Q8):4C2 | 128,876 |
(C2×C4.Q8)⋊5C2 = C2×M4(2)⋊C4 | φ: C2/C1 → C2 ⊆ Out C2×C4.Q8 | 64 | | (C2xC4.Q8):5C2 | 128,1642 |
(C2×C4.Q8)⋊6C2 = C4○D4.7Q8 | φ: C2/C1 → C2 ⊆ Out C2×C4.Q8 | 64 | | (C2xC4.Q8):6C2 | 128,1644 |
(C2×C4.Q8)⋊7C2 = C2×D8⋊C4 | φ: C2/C1 → C2 ⊆ Out C2×C4.Q8 | 64 | | (C2xC4.Q8):7C2 | 128,1674 |
(C2×C4.Q8)⋊8C2 = C42.281C23 | φ: C2/C1 → C2 ⊆ Out C2×C4.Q8 | 64 | | (C2xC4.Q8):8C2 | 128,1684 |
(C2×C4.Q8)⋊9C2 = C2×C8⋊2D4 | φ: C2/C1 → C2 ⊆ Out C2×C4.Q8 | 64 | | (C2xC4.Q8):9C2 | 128,1784 |
(C2×C4.Q8)⋊10C2 = C2×C8.D4 | φ: C2/C1 → C2 ⊆ Out C2×C4.Q8 | 64 | | (C2xC4.Q8):10C2 | 128,1785 |
(C2×C4.Q8)⋊11C2 = (C2×C8)⋊13D4 | φ: C2/C1 → C2 ⊆ Out C2×C4.Q8 | 64 | | (C2xC4.Q8):11C2 | 128,1792 |
(C2×C4.Q8)⋊12C2 = C42.58C23 | φ: C2/C1 → C2 ⊆ Out C2×C4.Q8 | 64 | | (C2xC4.Q8):12C2 | 128,2076 |
(C2×C4.Q8)⋊13C2 = C42.59C23 | φ: C2/C1 → C2 ⊆ Out C2×C4.Q8 | 64 | | (C2xC4.Q8):13C2 | 128,2077 |
(C2×C4.Q8)⋊14C2 = C24.133D4 | φ: C2/C1 → C2 ⊆ Out C2×C4.Q8 | 64 | | (C2xC4.Q8):14C2 | 128,539 |
(C2×C4.Q8)⋊15C2 = C24.159D4 | φ: C2/C1 → C2 ⊆ Out C2×C4.Q8 | 64 | | (C2xC4.Q8):15C2 | 128,585 |
(C2×C4.Q8)⋊16C2 = C24.71D4 | φ: C2/C1 → C2 ⊆ Out C2×C4.Q8 | 64 | | (C2xC4.Q8):16C2 | 128,586 |
(C2×C4.Q8)⋊17C2 = D4⋊(C4⋊C4) | φ: C2/C1 → C2 ⊆ Out C2×C4.Q8 | 64 | | (C2xC4.Q8):17C2 | 128,596 |
(C2×C4.Q8)⋊18C2 = C4.67(C4×D4) | φ: C2/C1 → C2 ⊆ Out C2×C4.Q8 | 64 | | (C2xC4.Q8):18C2 | 128,658 |
(C2×C4.Q8)⋊19C2 = (C2×C4)⋊9SD16 | φ: C2/C1 → C2 ⊆ Out C2×C4.Q8 | 64 | | (C2xC4.Q8):19C2 | 128,700 |
(C2×C4.Q8)⋊20C2 = C24.84D4 | φ: C2/C1 → C2 ⊆ Out C2×C4.Q8 | 64 | | (C2xC4.Q8):20C2 | 128,766 |
(C2×C4.Q8)⋊21C2 = C24.85D4 | φ: C2/C1 → C2 ⊆ Out C2×C4.Q8 | 64 | | (C2xC4.Q8):21C2 | 128,767 |
(C2×C4.Q8)⋊22C2 = C4⋊C4.106D4 | φ: C2/C1 → C2 ⊆ Out C2×C4.Q8 | 64 | | (C2xC4.Q8):22C2 | 128,797 |
(C2×C4.Q8)⋊23C2 = C24.89D4 | φ: C2/C1 → C2 ⊆ Out C2×C4.Q8 | 64 | | (C2xC4.Q8):23C2 | 128,809 |
(C2×C4.Q8)⋊24C2 = (C2×C8).165D4 | φ: C2/C1 → C2 ⊆ Out C2×C4.Q8 | 64 | | (C2xC4.Q8):24C2 | 128,811 |
(C2×C4.Q8)⋊25C2 = (C2×C8).168D4 | φ: C2/C1 → C2 ⊆ Out C2×C4.Q8 | 64 | | (C2xC4.Q8):25C2 | 128,824 |
(C2×C4.Q8)⋊26C2 = (C2×C8).169D4 | φ: C2/C1 → C2 ⊆ Out C2×C4.Q8 | 64 | | (C2xC4.Q8):26C2 | 128,826 |
(C2×C4.Q8)⋊27C2 = C2×C8⋊8D4 | φ: C2/C1 → C2 ⊆ Out C2×C4.Q8 | 64 | | (C2xC4.Q8):27C2 | 128,1779 |
(C2×C4.Q8)⋊28C2 = C2×D4⋊2Q8 | φ: C2/C1 → C2 ⊆ Out C2×C4.Q8 | 64 | | (C2xC4.Q8):28C2 | 128,1803 |
(C2×C4.Q8)⋊29C2 = C2×D4.Q8 | φ: C2/C1 → C2 ⊆ Out C2×C4.Q8 | 64 | | (C2xC4.Q8):29C2 | 128,1804 |
(C2×C4.Q8)⋊30C2 = C42.23C23 | φ: C2/C1 → C2 ⊆ Out C2×C4.Q8 | 64 | | (C2xC4.Q8):30C2 | 128,1816 |
(C2×C4.Q8)⋊31C2 = C2×C23.47D4 | φ: C2/C1 → C2 ⊆ Out C2×C4.Q8 | 64 | | (C2xC4.Q8):31C2 | 128,1818 |
(C2×C4.Q8)⋊32C2 = C2×C23.19D4 | φ: C2/C1 → C2 ⊆ Out C2×C4.Q8 | 64 | | (C2xC4.Q8):32C2 | 128,1819 |
(C2×C4.Q8)⋊33C2 = C2×C23.20D4 | φ: C2/C1 → C2 ⊆ Out C2×C4.Q8 | 64 | | (C2xC4.Q8):33C2 | 128,1820 |
(C2×C4.Q8)⋊34C2 = C2×C23.46D4 | φ: C2/C1 → C2 ⊆ Out C2×C4.Q8 | 64 | | (C2xC4.Q8):34C2 | 128,1821 |
(C2×C4.Q8)⋊35C2 = (C2×D4).304D4 | φ: C2/C1 → C2 ⊆ Out C2×C4.Q8 | 64 | | (C2xC4.Q8):35C2 | 128,1831 |
(C2×C4.Q8)⋊36C2 = D4⋊9SD16 | φ: C2/C1 → C2 ⊆ Out C2×C4.Q8 | 64 | | (C2xC4.Q8):36C2 | 128,2067 |
(C2×C4.Q8)⋊37C2 = C42.486C23 | φ: C2/C1 → C2 ⊆ Out C2×C4.Q8 | 64 | | (C2xC4.Q8):37C2 | 128,2069 |
(C2×C4.Q8)⋊38C2 = C2×C23.25D4 | φ: trivial image | 64 | | (C2xC4.Q8):38C2 | 128,1641 |
(C2×C4.Q8)⋊39C2 = C2×C4×SD16 | φ: trivial image | 64 | | (C2xC4.Q8):39C2 | 128,1669 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×C4.Q8).1C2 = C8.11C42 | φ: C2/C1 → C2 ⊆ Out C2×C4.Q8 | 32 | | (C2xC4.Q8).1C2 | 128,115 |
(C2×C4.Q8).2C2 = C8.C42 | φ: C2/C1 → C2 ⊆ Out C2×C4.Q8 | 32 | | (C2xC4.Q8).2C2 | 128,118 |
(C2×C4.Q8).3C2 = C8⋊C42 | φ: C2/C1 → C2 ⊆ Out C2×C4.Q8 | 128 | | (C2xC4.Q8).3C2 | 128,508 |
(C2×C4.Q8).4C2 = C42.26Q8 | φ: C2/C1 → C2 ⊆ Out C2×C4.Q8 | 128 | | (C2xC4.Q8).4C2 | 128,579 |
(C2×C4.Q8).5C2 = C4.(C4×Q8) | φ: C2/C1 → C2 ⊆ Out C2×C4.Q8 | 128 | | (C2xC4.Q8).5C2 | 128,675 |
(C2×C4.Q8).6C2 = C8⋊(C4⋊C4) | φ: C2/C1 → C2 ⊆ Out C2×C4.Q8 | 128 | | (C2xC4.Q8).6C2 | 128,676 |
(C2×C4.Q8).7C2 = M4(2).5Q8 | φ: C2/C1 → C2 ⊆ Out C2×C4.Q8 | 64 | | (C2xC4.Q8).7C2 | 128,683 |
(C2×C4.Q8).8C2 = (C2×Q16)⋊10C4 | φ: C2/C1 → C2 ⊆ Out C2×C4.Q8 | 128 | | (C2xC4.Q8).8C2 | 128,703 |
(C2×C4.Q8).9C2 = C2×C8.Q8 | φ: C2/C1 → C2 ⊆ Out C2×C4.Q8 | 32 | | (C2xC4.Q8).9C2 | 128,886 |
(C2×C4.Q8).10C2 = C2×Q16⋊C4 | φ: C2/C1 → C2 ⊆ Out C2×C4.Q8 | 128 | | (C2xC4.Q8).10C2 | 128,1673 |
(C2×C4.Q8).11C2 = C2×C8⋊Q8 | φ: C2/C1 → C2 ⊆ Out C2×C4.Q8 | 128 | | (C2xC4.Q8).11C2 | 128,1893 |
(C2×C4.Q8).12C2 = M4(2)⋊3Q8 | φ: C2/C1 → C2 ⊆ Out C2×C4.Q8 | 64 | | (C2xC4.Q8).12C2 | 128,1895 |
(C2×C4.Q8).13C2 = C42.58Q8 | φ: C2/C1 → C2 ⊆ Out C2×C4.Q8 | 128 | | (C2xC4.Q8).13C2 | 128,576 |
(C2×C4.Q8).14C2 = C42.60Q8 | φ: C2/C1 → C2 ⊆ Out C2×C4.Q8 | 128 | | (C2xC4.Q8).14C2 | 128,578 |
(C2×C4.Q8).15C2 = Q8⋊C4⋊C4 | φ: C2/C1 → C2 ⊆ Out C2×C4.Q8 | 128 | | (C2xC4.Q8).15C2 | 128,597 |
(C2×C4.Q8).16C2 = C4.Q8⋊9C4 | φ: C2/C1 → C2 ⊆ Out C2×C4.Q8 | 128 | | (C2xC4.Q8).16C2 | 128,651 |
(C2×C4.Q8).17C2 = C4.Q8⋊10C4 | φ: C2/C1 → C2 ⊆ Out C2×C4.Q8 | 128 | | (C2xC4.Q8).17C2 | 128,652 |
(C2×C4.Q8).18C2 = C4.68(C4×D4) | φ: C2/C1 → C2 ⊆ Out C2×C4.Q8 | 128 | | (C2xC4.Q8).18C2 | 128,659 |
(C2×C4.Q8).19C2 = C8⋊7(C4⋊C4) | φ: C2/C1 → C2 ⊆ Out C2×C4.Q8 | 128 | | (C2xC4.Q8).19C2 | 128,673 |
(C2×C4.Q8).20C2 = C42.30Q8 | φ: C2/C1 → C2 ⊆ Out C2×C4.Q8 | 128 | | (C2xC4.Q8).20C2 | 128,680 |
(C2×C4.Q8).21C2 = C42.31Q8 | φ: C2/C1 → C2 ⊆ Out C2×C4.Q8 | 128 | | (C2xC4.Q8).21C2 | 128,681 |
(C2×C4.Q8).22C2 = (C2×C8)⋊Q8 | φ: C2/C1 → C2 ⊆ Out C2×C4.Q8 | 128 | | (C2xC4.Q8).22C2 | 128,790 |
(C2×C4.Q8).23C2 = C2.(C8⋊Q8) | φ: C2/C1 → C2 ⊆ Out C2×C4.Q8 | 128 | | (C2xC4.Q8).23C2 | 128,791 |
(C2×C4.Q8).24C2 = (C2×Q8).8Q8 | φ: C2/C1 → C2 ⊆ Out C2×C4.Q8 | 128 | | (C2xC4.Q8).24C2 | 128,798 |
(C2×C4.Q8).25C2 = C2.(C8⋊3Q8) | φ: C2/C1 → C2 ⊆ Out C2×C4.Q8 | 128 | | (C2xC4.Q8).25C2 | 128,816 |
(C2×C4.Q8).26C2 = (C2×C8).24Q8 | φ: C2/C1 → C2 ⊆ Out C2×C4.Q8 | 128 | | (C2xC4.Q8).26C2 | 128,817 |
(C2×C4.Q8).27C2 = C4.(C4⋊Q8) | φ: C2/C1 → C2 ⊆ Out C2×C4.Q8 | 128 | | (C2xC4.Q8).27C2 | 128,820 |
(C2×C4.Q8).28C2 = M4(2).2Q8 | φ: C2/C1 → C2 ⊆ Out C2×C4.Q8 | 64 | | (C2xC4.Q8).28C2 | 128,822 |
(C2×C4.Q8).29C2 = (C2×C8).170D4 | φ: C2/C1 → C2 ⊆ Out C2×C4.Q8 | 128 | | (C2xC4.Q8).29C2 | 128,828 |
(C2×C4.Q8).30C2 = (C2×C8).171D4 | φ: C2/C1 → C2 ⊆ Out C2×C4.Q8 | 128 | | (C2xC4.Q8).30C2 | 128,829 |
(C2×C4.Q8).31C2 = C2×Q8⋊Q8 | φ: C2/C1 → C2 ⊆ Out C2×C4.Q8 | 128 | | (C2xC4.Q8).31C2 | 128,1805 |
(C2×C4.Q8).32C2 = C2×Q8.Q8 | φ: C2/C1 → C2 ⊆ Out C2×C4.Q8 | 128 | | (C2xC4.Q8).32C2 | 128,1807 |
(C2×C4.Q8).33C2 = C2×C8⋊3Q8 | φ: C2/C1 → C2 ⊆ Out C2×C4.Q8 | 128 | | (C2xC4.Q8).33C2 | 128,1889 |
(C2×C4.Q8).34C2 = C2×C8.5Q8 | φ: C2/C1 → C2 ⊆ Out C2×C4.Q8 | 128 | | (C2xC4.Q8).34C2 | 128,1890 |
(C2×C4.Q8).35C2 = C4×C4.Q8 | φ: trivial image | 128 | | (C2xC4.Q8).35C2 | 128,506 |