Extensions 1→N→G→Q→1 with N=C2×C4.Q8 and Q=C2

Direct product G=N×Q with N=C2×C4.Q8 and Q=C2
dρLabelID
C22×C4.Q8128C2^2xC4.Q8128,1639

Semidirect products G=N:Q with N=C2×C4.Q8 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×C4.Q8)⋊1C2 = C24.67D4φ: C2/C1C2 ⊆ Out C2×C4.Q864(C2xC4.Q8):1C2128,541
(C2×C4.Q8)⋊2C2 = C4○D4.4Q8φ: C2/C1C2 ⊆ Out C2×C4.Q864(C2xC4.Q8):2C2128,547
(C2×C4.Q8)⋊3C2 = (C2×D8)⋊10C4φ: C2/C1C2 ⊆ Out C2×C4.Q864(C2xC4.Q8):3C2128,704
(C2×C4.Q8)⋊4C2 = C2×D82C4φ: C2/C1C2 ⊆ Out C2×C4.Q832(C2xC4.Q8):4C2128,876
(C2×C4.Q8)⋊5C2 = C2×M4(2)⋊C4φ: C2/C1C2 ⊆ Out C2×C4.Q864(C2xC4.Q8):5C2128,1642
(C2×C4.Q8)⋊6C2 = C4○D4.7Q8φ: C2/C1C2 ⊆ Out C2×C4.Q864(C2xC4.Q8):6C2128,1644
(C2×C4.Q8)⋊7C2 = C2×D8⋊C4φ: C2/C1C2 ⊆ Out C2×C4.Q864(C2xC4.Q8):7C2128,1674
(C2×C4.Q8)⋊8C2 = C42.281C23φ: C2/C1C2 ⊆ Out C2×C4.Q864(C2xC4.Q8):8C2128,1684
(C2×C4.Q8)⋊9C2 = C2×C82D4φ: C2/C1C2 ⊆ Out C2×C4.Q864(C2xC4.Q8):9C2128,1784
(C2×C4.Q8)⋊10C2 = C2×C8.D4φ: C2/C1C2 ⊆ Out C2×C4.Q864(C2xC4.Q8):10C2128,1785
(C2×C4.Q8)⋊11C2 = (C2×C8)⋊13D4φ: C2/C1C2 ⊆ Out C2×C4.Q864(C2xC4.Q8):11C2128,1792
(C2×C4.Q8)⋊12C2 = C42.58C23φ: C2/C1C2 ⊆ Out C2×C4.Q864(C2xC4.Q8):12C2128,2076
(C2×C4.Q8)⋊13C2 = C42.59C23φ: C2/C1C2 ⊆ Out C2×C4.Q864(C2xC4.Q8):13C2128,2077
(C2×C4.Q8)⋊14C2 = C24.133D4φ: C2/C1C2 ⊆ Out C2×C4.Q864(C2xC4.Q8):14C2128,539
(C2×C4.Q8)⋊15C2 = C24.159D4φ: C2/C1C2 ⊆ Out C2×C4.Q864(C2xC4.Q8):15C2128,585
(C2×C4.Q8)⋊16C2 = C24.71D4φ: C2/C1C2 ⊆ Out C2×C4.Q864(C2xC4.Q8):16C2128,586
(C2×C4.Q8)⋊17C2 = D4⋊(C4⋊C4)φ: C2/C1C2 ⊆ Out C2×C4.Q864(C2xC4.Q8):17C2128,596
(C2×C4.Q8)⋊18C2 = C4.67(C4×D4)φ: C2/C1C2 ⊆ Out C2×C4.Q864(C2xC4.Q8):18C2128,658
(C2×C4.Q8)⋊19C2 = (C2×C4)⋊9SD16φ: C2/C1C2 ⊆ Out C2×C4.Q864(C2xC4.Q8):19C2128,700
(C2×C4.Q8)⋊20C2 = C24.84D4φ: C2/C1C2 ⊆ Out C2×C4.Q864(C2xC4.Q8):20C2128,766
(C2×C4.Q8)⋊21C2 = C24.85D4φ: C2/C1C2 ⊆ Out C2×C4.Q864(C2xC4.Q8):21C2128,767
(C2×C4.Q8)⋊22C2 = C4⋊C4.106D4φ: C2/C1C2 ⊆ Out C2×C4.Q864(C2xC4.Q8):22C2128,797
(C2×C4.Q8)⋊23C2 = C24.89D4φ: C2/C1C2 ⊆ Out C2×C4.Q864(C2xC4.Q8):23C2128,809
(C2×C4.Q8)⋊24C2 = (C2×C8).165D4φ: C2/C1C2 ⊆ Out C2×C4.Q864(C2xC4.Q8):24C2128,811
(C2×C4.Q8)⋊25C2 = (C2×C8).168D4φ: C2/C1C2 ⊆ Out C2×C4.Q864(C2xC4.Q8):25C2128,824
(C2×C4.Q8)⋊26C2 = (C2×C8).169D4φ: C2/C1C2 ⊆ Out C2×C4.Q864(C2xC4.Q8):26C2128,826
(C2×C4.Q8)⋊27C2 = C2×C88D4φ: C2/C1C2 ⊆ Out C2×C4.Q864(C2xC4.Q8):27C2128,1779
(C2×C4.Q8)⋊28C2 = C2×D42Q8φ: C2/C1C2 ⊆ Out C2×C4.Q864(C2xC4.Q8):28C2128,1803
(C2×C4.Q8)⋊29C2 = C2×D4.Q8φ: C2/C1C2 ⊆ Out C2×C4.Q864(C2xC4.Q8):29C2128,1804
(C2×C4.Q8)⋊30C2 = C42.23C23φ: C2/C1C2 ⊆ Out C2×C4.Q864(C2xC4.Q8):30C2128,1816
(C2×C4.Q8)⋊31C2 = C2×C23.47D4φ: C2/C1C2 ⊆ Out C2×C4.Q864(C2xC4.Q8):31C2128,1818
(C2×C4.Q8)⋊32C2 = C2×C23.19D4φ: C2/C1C2 ⊆ Out C2×C4.Q864(C2xC4.Q8):32C2128,1819
(C2×C4.Q8)⋊33C2 = C2×C23.20D4φ: C2/C1C2 ⊆ Out C2×C4.Q864(C2xC4.Q8):33C2128,1820
(C2×C4.Q8)⋊34C2 = C2×C23.46D4φ: C2/C1C2 ⊆ Out C2×C4.Q864(C2xC4.Q8):34C2128,1821
(C2×C4.Q8)⋊35C2 = (C2×D4).304D4φ: C2/C1C2 ⊆ Out C2×C4.Q864(C2xC4.Q8):35C2128,1831
(C2×C4.Q8)⋊36C2 = D49SD16φ: C2/C1C2 ⊆ Out C2×C4.Q864(C2xC4.Q8):36C2128,2067
(C2×C4.Q8)⋊37C2 = C42.486C23φ: C2/C1C2 ⊆ Out C2×C4.Q864(C2xC4.Q8):37C2128,2069
(C2×C4.Q8)⋊38C2 = C2×C23.25D4φ: trivial image64(C2xC4.Q8):38C2128,1641
(C2×C4.Q8)⋊39C2 = C2×C4×SD16φ: trivial image64(C2xC4.Q8):39C2128,1669

Non-split extensions G=N.Q with N=C2×C4.Q8 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×C4.Q8).1C2 = C8.11C42φ: C2/C1C2 ⊆ Out C2×C4.Q832(C2xC4.Q8).1C2128,115
(C2×C4.Q8).2C2 = C8.C42φ: C2/C1C2 ⊆ Out C2×C4.Q832(C2xC4.Q8).2C2128,118
(C2×C4.Q8).3C2 = C8⋊C42φ: C2/C1C2 ⊆ Out C2×C4.Q8128(C2xC4.Q8).3C2128,508
(C2×C4.Q8).4C2 = C42.26Q8φ: C2/C1C2 ⊆ Out C2×C4.Q8128(C2xC4.Q8).4C2128,579
(C2×C4.Q8).5C2 = C4.(C4×Q8)φ: C2/C1C2 ⊆ Out C2×C4.Q8128(C2xC4.Q8).5C2128,675
(C2×C4.Q8).6C2 = C8⋊(C4⋊C4)φ: C2/C1C2 ⊆ Out C2×C4.Q8128(C2xC4.Q8).6C2128,676
(C2×C4.Q8).7C2 = M4(2).5Q8φ: C2/C1C2 ⊆ Out C2×C4.Q864(C2xC4.Q8).7C2128,683
(C2×C4.Q8).8C2 = (C2×Q16)⋊10C4φ: C2/C1C2 ⊆ Out C2×C4.Q8128(C2xC4.Q8).8C2128,703
(C2×C4.Q8).9C2 = C2×C8.Q8φ: C2/C1C2 ⊆ Out C2×C4.Q832(C2xC4.Q8).9C2128,886
(C2×C4.Q8).10C2 = C2×Q16⋊C4φ: C2/C1C2 ⊆ Out C2×C4.Q8128(C2xC4.Q8).10C2128,1673
(C2×C4.Q8).11C2 = C2×C8⋊Q8φ: C2/C1C2 ⊆ Out C2×C4.Q8128(C2xC4.Q8).11C2128,1893
(C2×C4.Q8).12C2 = M4(2)⋊3Q8φ: C2/C1C2 ⊆ Out C2×C4.Q864(C2xC4.Q8).12C2128,1895
(C2×C4.Q8).13C2 = C42.58Q8φ: C2/C1C2 ⊆ Out C2×C4.Q8128(C2xC4.Q8).13C2128,576
(C2×C4.Q8).14C2 = C42.60Q8φ: C2/C1C2 ⊆ Out C2×C4.Q8128(C2xC4.Q8).14C2128,578
(C2×C4.Q8).15C2 = Q8⋊C4⋊C4φ: C2/C1C2 ⊆ Out C2×C4.Q8128(C2xC4.Q8).15C2128,597
(C2×C4.Q8).16C2 = C4.Q89C4φ: C2/C1C2 ⊆ Out C2×C4.Q8128(C2xC4.Q8).16C2128,651
(C2×C4.Q8).17C2 = C4.Q810C4φ: C2/C1C2 ⊆ Out C2×C4.Q8128(C2xC4.Q8).17C2128,652
(C2×C4.Q8).18C2 = C4.68(C4×D4)φ: C2/C1C2 ⊆ Out C2×C4.Q8128(C2xC4.Q8).18C2128,659
(C2×C4.Q8).19C2 = C87(C4⋊C4)φ: C2/C1C2 ⊆ Out C2×C4.Q8128(C2xC4.Q8).19C2128,673
(C2×C4.Q8).20C2 = C42.30Q8φ: C2/C1C2 ⊆ Out C2×C4.Q8128(C2xC4.Q8).20C2128,680
(C2×C4.Q8).21C2 = C42.31Q8φ: C2/C1C2 ⊆ Out C2×C4.Q8128(C2xC4.Q8).21C2128,681
(C2×C4.Q8).22C2 = (C2×C8)⋊Q8φ: C2/C1C2 ⊆ Out C2×C4.Q8128(C2xC4.Q8).22C2128,790
(C2×C4.Q8).23C2 = C2.(C8⋊Q8)φ: C2/C1C2 ⊆ Out C2×C4.Q8128(C2xC4.Q8).23C2128,791
(C2×C4.Q8).24C2 = (C2×Q8).8Q8φ: C2/C1C2 ⊆ Out C2×C4.Q8128(C2xC4.Q8).24C2128,798
(C2×C4.Q8).25C2 = C2.(C83Q8)φ: C2/C1C2 ⊆ Out C2×C4.Q8128(C2xC4.Q8).25C2128,816
(C2×C4.Q8).26C2 = (C2×C8).24Q8φ: C2/C1C2 ⊆ Out C2×C4.Q8128(C2xC4.Q8).26C2128,817
(C2×C4.Q8).27C2 = C4.(C4⋊Q8)φ: C2/C1C2 ⊆ Out C2×C4.Q8128(C2xC4.Q8).27C2128,820
(C2×C4.Q8).28C2 = M4(2).2Q8φ: C2/C1C2 ⊆ Out C2×C4.Q864(C2xC4.Q8).28C2128,822
(C2×C4.Q8).29C2 = (C2×C8).170D4φ: C2/C1C2 ⊆ Out C2×C4.Q8128(C2xC4.Q8).29C2128,828
(C2×C4.Q8).30C2 = (C2×C8).171D4φ: C2/C1C2 ⊆ Out C2×C4.Q8128(C2xC4.Q8).30C2128,829
(C2×C4.Q8).31C2 = C2×Q8⋊Q8φ: C2/C1C2 ⊆ Out C2×C4.Q8128(C2xC4.Q8).31C2128,1805
(C2×C4.Q8).32C2 = C2×Q8.Q8φ: C2/C1C2 ⊆ Out C2×C4.Q8128(C2xC4.Q8).32C2128,1807
(C2×C4.Q8).33C2 = C2×C83Q8φ: C2/C1C2 ⊆ Out C2×C4.Q8128(C2xC4.Q8).33C2128,1889
(C2×C4.Q8).34C2 = C2×C8.5Q8φ: C2/C1C2 ⊆ Out C2×C4.Q8128(C2xC4.Q8).34C2128,1890
(C2×C4.Q8).35C2 = C4×C4.Q8φ: trivial image128(C2xC4.Q8).35C2128,506

׿
×
𝔽