Copied to
clipboard

G = C2×C8⋊Q8order 128 = 27

Direct product of C2 and C8⋊Q8

direct product, p-group, metabelian, nilpotent (class 3), monomial, rational

Aliases: C2×C8⋊Q8, C42.251D4, C42.379C23, (C2×C8)⋊2Q8, C84(C2×Q8), C4.15(C4⋊Q8), C4.12(C22×Q8), C4⋊C4.100C23, (C2×C4).359C24, (C2×C8).270C23, (C22×C4).471D4, C23.885(C2×D4), C4⋊Q8.285C22, C22.47(C4⋊Q8), C8⋊C4.120C22, C4.Q8.131C22, C2.D8.215C22, (C22×C8).274C22, (C2×C42).858C22, C22.619(C22×D4), C22.126(C8⋊C22), (C22×C4).1568C23, C42.C2.116C22, C22.115(C8.C22), C2.29(C2×C4⋊Q8), (C2×C4⋊Q8).51C2, (C2×C4).520(C2×D4), C2.43(C2×C8⋊C22), (C2×C4).248(C2×Q8), (C2×C2.D8).38C2, (C2×C4.Q8).11C2, (C2×C8⋊C4).11C2, C2.43(C2×C8.C22), (C2×C4⋊C4).631C22, (C2×C42.C2).34C2, SmallGroup(128,1893)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — C2×C8⋊Q8
C1C2C4C2×C4C22×C4C22×C8C2×C8⋊C4 — C2×C8⋊Q8
C1C2C2×C4 — C2×C8⋊Q8
C1C23C2×C42 — C2×C8⋊Q8
C1C2C2C2×C4 — C2×C8⋊Q8

Generators and relations for C2×C8⋊Q8
 G = < a,b,c,d | a2=b8=c4=1, d2=c2, ab=ba, ac=ca, ad=da, cbc-1=b5, dbd-1=b3, dcd-1=c-1 >

Subgroups: 324 in 192 conjugacy classes, 116 normal (18 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, C2×C4, Q8, C23, C42, C4⋊C4, C4⋊C4, C2×C8, C22×C4, C22×C4, C2×Q8, C8⋊C4, C4.Q8, C2.D8, C2×C42, C2×C4⋊C4, C2×C4⋊C4, C2×C4⋊C4, C42.C2, C42.C2, C4⋊Q8, C4⋊Q8, C22×C8, C22×Q8, C2×C8⋊C4, C2×C4.Q8, C2×C2.D8, C8⋊Q8, C2×C42.C2, C2×C4⋊Q8, C2×C8⋊Q8
Quotients: C1, C2, C22, D4, Q8, C23, C2×D4, C2×Q8, C24, C4⋊Q8, C8⋊C22, C8.C22, C22×D4, C22×Q8, C8⋊Q8, C2×C4⋊Q8, C2×C8⋊C22, C2×C8.C22, C2×C8⋊Q8

Smallest permutation representation of C2×C8⋊Q8
Regular action on 128 points
Generators in S128
(1 19)(2 20)(3 21)(4 22)(5 23)(6 24)(7 17)(8 18)(9 47)(10 48)(11 41)(12 42)(13 43)(14 44)(15 45)(16 46)(25 97)(26 98)(27 99)(28 100)(29 101)(30 102)(31 103)(32 104)(33 75)(34 76)(35 77)(36 78)(37 79)(38 80)(39 73)(40 74)(49 62)(50 63)(51 64)(52 57)(53 58)(54 59)(55 60)(56 61)(65 107)(66 108)(67 109)(68 110)(69 111)(70 112)(71 105)(72 106)(81 94)(82 95)(83 96)(84 89)(85 90)(86 91)(87 92)(88 93)(113 126)(114 127)(115 128)(116 121)(117 122)(118 123)(119 124)(120 125)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)
(1 59 46 35)(2 64 47 40)(3 61 48 37)(4 58 41 34)(5 63 42 39)(6 60 43 36)(7 57 44 33)(8 62 45 38)(9 74 20 51)(10 79 21 56)(11 76 22 53)(12 73 23 50)(13 78 24 55)(14 75 17 52)(15 80 18 49)(16 77 19 54)(25 72 116 89)(26 69 117 94)(27 66 118 91)(28 71 119 96)(29 68 120 93)(30 65 113 90)(31 70 114 95)(32 67 115 92)(81 98 111 122)(82 103 112 127)(83 100 105 124)(84 97 106 121)(85 102 107 126)(86 99 108 123)(87 104 109 128)(88 101 110 125)
(1 93 46 68)(2 96 47 71)(3 91 48 66)(4 94 41 69)(5 89 42 72)(6 92 43 67)(7 95 44 70)(8 90 45 65)(9 105 20 83)(10 108 21 86)(11 111 22 81)(12 106 23 84)(13 109 24 87)(14 112 17 82)(15 107 18 85)(16 110 19 88)(25 63 116 39)(26 58 117 34)(27 61 118 37)(28 64 119 40)(29 59 120 35)(30 62 113 38)(31 57 114 33)(32 60 115 36)(49 126 80 102)(50 121 73 97)(51 124 74 100)(52 127 75 103)(53 122 76 98)(54 125 77 101)(55 128 78 104)(56 123 79 99)

G:=sub<Sym(128)| (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,17)(8,18)(9,47)(10,48)(11,41)(12,42)(13,43)(14,44)(15,45)(16,46)(25,97)(26,98)(27,99)(28,100)(29,101)(30,102)(31,103)(32,104)(33,75)(34,76)(35,77)(36,78)(37,79)(38,80)(39,73)(40,74)(49,62)(50,63)(51,64)(52,57)(53,58)(54,59)(55,60)(56,61)(65,107)(66,108)(67,109)(68,110)(69,111)(70,112)(71,105)(72,106)(81,94)(82,95)(83,96)(84,89)(85,90)(86,91)(87,92)(88,93)(113,126)(114,127)(115,128)(116,121)(117,122)(118,123)(119,124)(120,125), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,59,46,35)(2,64,47,40)(3,61,48,37)(4,58,41,34)(5,63,42,39)(6,60,43,36)(7,57,44,33)(8,62,45,38)(9,74,20,51)(10,79,21,56)(11,76,22,53)(12,73,23,50)(13,78,24,55)(14,75,17,52)(15,80,18,49)(16,77,19,54)(25,72,116,89)(26,69,117,94)(27,66,118,91)(28,71,119,96)(29,68,120,93)(30,65,113,90)(31,70,114,95)(32,67,115,92)(81,98,111,122)(82,103,112,127)(83,100,105,124)(84,97,106,121)(85,102,107,126)(86,99,108,123)(87,104,109,128)(88,101,110,125), (1,93,46,68)(2,96,47,71)(3,91,48,66)(4,94,41,69)(5,89,42,72)(6,92,43,67)(7,95,44,70)(8,90,45,65)(9,105,20,83)(10,108,21,86)(11,111,22,81)(12,106,23,84)(13,109,24,87)(14,112,17,82)(15,107,18,85)(16,110,19,88)(25,63,116,39)(26,58,117,34)(27,61,118,37)(28,64,119,40)(29,59,120,35)(30,62,113,38)(31,57,114,33)(32,60,115,36)(49,126,80,102)(50,121,73,97)(51,124,74,100)(52,127,75,103)(53,122,76,98)(54,125,77,101)(55,128,78,104)(56,123,79,99)>;

G:=Group( (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,17)(8,18)(9,47)(10,48)(11,41)(12,42)(13,43)(14,44)(15,45)(16,46)(25,97)(26,98)(27,99)(28,100)(29,101)(30,102)(31,103)(32,104)(33,75)(34,76)(35,77)(36,78)(37,79)(38,80)(39,73)(40,74)(49,62)(50,63)(51,64)(52,57)(53,58)(54,59)(55,60)(56,61)(65,107)(66,108)(67,109)(68,110)(69,111)(70,112)(71,105)(72,106)(81,94)(82,95)(83,96)(84,89)(85,90)(86,91)(87,92)(88,93)(113,126)(114,127)(115,128)(116,121)(117,122)(118,123)(119,124)(120,125), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,59,46,35)(2,64,47,40)(3,61,48,37)(4,58,41,34)(5,63,42,39)(6,60,43,36)(7,57,44,33)(8,62,45,38)(9,74,20,51)(10,79,21,56)(11,76,22,53)(12,73,23,50)(13,78,24,55)(14,75,17,52)(15,80,18,49)(16,77,19,54)(25,72,116,89)(26,69,117,94)(27,66,118,91)(28,71,119,96)(29,68,120,93)(30,65,113,90)(31,70,114,95)(32,67,115,92)(81,98,111,122)(82,103,112,127)(83,100,105,124)(84,97,106,121)(85,102,107,126)(86,99,108,123)(87,104,109,128)(88,101,110,125), (1,93,46,68)(2,96,47,71)(3,91,48,66)(4,94,41,69)(5,89,42,72)(6,92,43,67)(7,95,44,70)(8,90,45,65)(9,105,20,83)(10,108,21,86)(11,111,22,81)(12,106,23,84)(13,109,24,87)(14,112,17,82)(15,107,18,85)(16,110,19,88)(25,63,116,39)(26,58,117,34)(27,61,118,37)(28,64,119,40)(29,59,120,35)(30,62,113,38)(31,57,114,33)(32,60,115,36)(49,126,80,102)(50,121,73,97)(51,124,74,100)(52,127,75,103)(53,122,76,98)(54,125,77,101)(55,128,78,104)(56,123,79,99) );

G=PermutationGroup([[(1,19),(2,20),(3,21),(4,22),(5,23),(6,24),(7,17),(8,18),(9,47),(10,48),(11,41),(12,42),(13,43),(14,44),(15,45),(16,46),(25,97),(26,98),(27,99),(28,100),(29,101),(30,102),(31,103),(32,104),(33,75),(34,76),(35,77),(36,78),(37,79),(38,80),(39,73),(40,74),(49,62),(50,63),(51,64),(52,57),(53,58),(54,59),(55,60),(56,61),(65,107),(66,108),(67,109),(68,110),(69,111),(70,112),(71,105),(72,106),(81,94),(82,95),(83,96),(84,89),(85,90),(86,91),(87,92),(88,93),(113,126),(114,127),(115,128),(116,121),(117,122),(118,123),(119,124),(120,125)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128)], [(1,59,46,35),(2,64,47,40),(3,61,48,37),(4,58,41,34),(5,63,42,39),(6,60,43,36),(7,57,44,33),(8,62,45,38),(9,74,20,51),(10,79,21,56),(11,76,22,53),(12,73,23,50),(13,78,24,55),(14,75,17,52),(15,80,18,49),(16,77,19,54),(25,72,116,89),(26,69,117,94),(27,66,118,91),(28,71,119,96),(29,68,120,93),(30,65,113,90),(31,70,114,95),(32,67,115,92),(81,98,111,122),(82,103,112,127),(83,100,105,124),(84,97,106,121),(85,102,107,126),(86,99,108,123),(87,104,109,128),(88,101,110,125)], [(1,93,46,68),(2,96,47,71),(3,91,48,66),(4,94,41,69),(5,89,42,72),(6,92,43,67),(7,95,44,70),(8,90,45,65),(9,105,20,83),(10,108,21,86),(11,111,22,81),(12,106,23,84),(13,109,24,87),(14,112,17,82),(15,107,18,85),(16,110,19,88),(25,63,116,39),(26,58,117,34),(27,61,118,37),(28,64,119,40),(29,59,120,35),(30,62,113,38),(31,57,114,33),(32,60,115,36),(49,126,80,102),(50,121,73,97),(51,124,74,100),(52,127,75,103),(53,122,76,98),(54,125,77,101),(55,128,78,104),(56,123,79,99)]])

32 conjugacy classes

class 1 2A···2G4A4B4C4D4E4F4G4H4I···4P8A···8H
order12···2444444444···48···8
size11···1222244448···84···4

32 irreducible representations

dim111111122244
type++++++++-++-
imageC1C2C2C2C2C2C2D4Q8D4C8⋊C22C8.C22
kernelC2×C8⋊Q8C2×C8⋊C4C2×C4.Q8C2×C2.D8C8⋊Q8C2×C42.C2C2×C4⋊Q8C42C2×C8C22×C4C22C22
# reps112281128222

Matrix representation of C2×C8⋊Q8 in GL8(𝔽17)

160000000
016000000
00100000
00010000
00001000
00000100
00000010
00000001
,
10000000
01000000
00100000
00010000
000000160
000000016
000001600
00001000
,
152000000
62000000
000160000
00100000
00004694
0000114139
0000481311
000094613
,
1215000000
135000000
0012120000
001250000
000037211
00007141115
0000156103
00006237

G:=sub<GL(8,GF(17))| [16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0],[15,6,0,0,0,0,0,0,2,2,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,0,4,11,4,9,0,0,0,0,6,4,8,4,0,0,0,0,9,13,13,6,0,0,0,0,4,9,11,13],[12,13,0,0,0,0,0,0,15,5,0,0,0,0,0,0,0,0,12,12,0,0,0,0,0,0,12,5,0,0,0,0,0,0,0,0,3,7,15,6,0,0,0,0,7,14,6,2,0,0,0,0,2,11,10,3,0,0,0,0,11,15,3,7] >;

C2×C8⋊Q8 in GAP, Magma, Sage, TeX

C_2\times C_8\rtimes Q_8
% in TeX

G:=Group("C2xC8:Q8");
// GroupNames label

G:=SmallGroup(128,1893);
// by ID

G=gap.SmallGroup(128,1893);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,112,253,120,758,723,184,4037,124]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^8=c^4=1,d^2=c^2,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=b^5,d*b*d^-1=b^3,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽