direct product, p-group, metabelian, nilpotent (class 3), monomial
Aliases: C2×M4(2)⋊C4, C24.172D4, C8⋊2(C22×C4), C4.4(C22×Q8), (C2×M4(2))⋊7C4, C4.48(C23×C4), C2.D8⋊62C22, C4.Q8⋊42C22, (C22×C4).64Q8, C4⋊C4.349C23, C23.76(C4⋊C4), M4(2)⋊14(C2×C4), (C2×C4).186C24, (C2×C8).243C23, (C22×C4).784D4, C23.642(C2×D4), (C22×C4).905C23, (C22×C8).242C22, (C23×C4).518C22, C22.133(C22×D4), (C22×M4(2)).3C2, C22.106(C8⋊C22), C22.95(C8.C22), C42⋊C2.286C22, (C2×M4(2)).256C22, (C2×C8)⋊7(C2×C4), C4.65(C2×C4⋊C4), (C2×C4.Q8)⋊5C2, (C2×C2.D8)⋊36C2, C2.3(C2×C8⋊C22), (C2×C4).61(C4⋊C4), C22.36(C2×C4⋊C4), C2.25(C22×C4⋊C4), (C2×C4).141(C2×Q8), C2.3(C2×C8.C22), (C2×C4).1409(C2×D4), (C22×C4⋊C4).44C2, (C2×C4⋊C4).904C22, (C22×C4).330(C2×C4), (C2×C4).574(C22×C4), (C2×C42⋊C2).54C2, SmallGroup(128,1642)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C2×M4(2)⋊C4
G = < a,b,c,d | a2=b8=c2=d4=1, ab=ba, ac=ca, ad=da, cbc=b5, dbd-1=b-1, cd=dc >
Subgroups: 412 in 268 conjugacy classes, 180 normal (20 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, M4(2), C22×C4, C22×C4, C22×C4, C24, C4.Q8, C2.D8, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C2×C4⋊C4, C42⋊C2, C42⋊C2, C22×C8, C2×M4(2), C23×C4, C23×C4, C2×C4.Q8, C2×C2.D8, M4(2)⋊C4, C22×C4⋊C4, C2×C42⋊C2, C22×M4(2), C2×M4(2)⋊C4
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C23, C4⋊C4, C22×C4, C2×D4, C2×Q8, C24, C2×C4⋊C4, C8⋊C22, C8.C22, C23×C4, C22×D4, C22×Q8, M4(2)⋊C4, C22×C4⋊C4, C2×C8⋊C22, C2×C8.C22, C2×M4(2)⋊C4
(1 23)(2 24)(3 17)(4 18)(5 19)(6 20)(7 21)(8 22)(9 44)(10 45)(11 46)(12 47)(13 48)(14 41)(15 42)(16 43)(25 35)(26 36)(27 37)(28 38)(29 39)(30 40)(31 33)(32 34)(49 64)(50 57)(51 58)(52 59)(53 60)(54 61)(55 62)(56 63)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 47)(2 44)(3 41)(4 46)(5 43)(6 48)(7 45)(8 42)(9 24)(10 21)(11 18)(12 23)(13 20)(14 17)(15 22)(16 19)(25 53)(26 50)(27 55)(28 52)(29 49)(30 54)(31 51)(32 56)(33 58)(34 63)(35 60)(36 57)(37 62)(38 59)(39 64)(40 61)
(1 61 47 40)(2 60 48 39)(3 59 41 38)(4 58 42 37)(5 57 43 36)(6 64 44 35)(7 63 45 34)(8 62 46 33)(9 25 20 49)(10 32 21 56)(11 31 22 55)(12 30 23 54)(13 29 24 53)(14 28 17 52)(15 27 18 51)(16 26 19 50)
G:=sub<Sym(64)| (1,23)(2,24)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,44)(10,45)(11,46)(12,47)(13,48)(14,41)(15,42)(16,43)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(31,33)(32,34)(49,64)(50,57)(51,58)(52,59)(53,60)(54,61)(55,62)(56,63), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,47)(2,44)(3,41)(4,46)(5,43)(6,48)(7,45)(8,42)(9,24)(10,21)(11,18)(12,23)(13,20)(14,17)(15,22)(16,19)(25,53)(26,50)(27,55)(28,52)(29,49)(30,54)(31,51)(32,56)(33,58)(34,63)(35,60)(36,57)(37,62)(38,59)(39,64)(40,61), (1,61,47,40)(2,60,48,39)(3,59,41,38)(4,58,42,37)(5,57,43,36)(6,64,44,35)(7,63,45,34)(8,62,46,33)(9,25,20,49)(10,32,21,56)(11,31,22,55)(12,30,23,54)(13,29,24,53)(14,28,17,52)(15,27,18,51)(16,26,19,50)>;
G:=Group( (1,23)(2,24)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,44)(10,45)(11,46)(12,47)(13,48)(14,41)(15,42)(16,43)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(31,33)(32,34)(49,64)(50,57)(51,58)(52,59)(53,60)(54,61)(55,62)(56,63), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,47)(2,44)(3,41)(4,46)(5,43)(6,48)(7,45)(8,42)(9,24)(10,21)(11,18)(12,23)(13,20)(14,17)(15,22)(16,19)(25,53)(26,50)(27,55)(28,52)(29,49)(30,54)(31,51)(32,56)(33,58)(34,63)(35,60)(36,57)(37,62)(38,59)(39,64)(40,61), (1,61,47,40)(2,60,48,39)(3,59,41,38)(4,58,42,37)(5,57,43,36)(6,64,44,35)(7,63,45,34)(8,62,46,33)(9,25,20,49)(10,32,21,56)(11,31,22,55)(12,30,23,54)(13,29,24,53)(14,28,17,52)(15,27,18,51)(16,26,19,50) );
G=PermutationGroup([[(1,23),(2,24),(3,17),(4,18),(5,19),(6,20),(7,21),(8,22),(9,44),(10,45),(11,46),(12,47),(13,48),(14,41),(15,42),(16,43),(25,35),(26,36),(27,37),(28,38),(29,39),(30,40),(31,33),(32,34),(49,64),(50,57),(51,58),(52,59),(53,60),(54,61),(55,62),(56,63)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,47),(2,44),(3,41),(4,46),(5,43),(6,48),(7,45),(8,42),(9,24),(10,21),(11,18),(12,23),(13,20),(14,17),(15,22),(16,19),(25,53),(26,50),(27,55),(28,52),(29,49),(30,54),(31,51),(32,56),(33,58),(34,63),(35,60),(36,57),(37,62),(38,59),(39,64),(40,61)], [(1,61,47,40),(2,60,48,39),(3,59,41,38),(4,58,42,37),(5,57,43,36),(6,64,44,35),(7,63,45,34),(8,62,46,33),(9,25,20,49),(10,32,21,56),(11,31,22,55),(12,30,23,54),(13,29,24,53),(14,28,17,52),(15,27,18,51),(16,26,19,50)]])
44 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 4A | ··· | 4H | 4I | ··· | 4X | 8A | ··· | 8H |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
size | 1 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | - | + | + | - | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C4 | D4 | Q8 | D4 | C8⋊C22 | C8.C22 |
kernel | C2×M4(2)⋊C4 | C2×C4.Q8 | C2×C2.D8 | M4(2)⋊C4 | C22×C4⋊C4 | C2×C42⋊C2 | C22×M4(2) | C2×M4(2) | C22×C4 | C22×C4 | C24 | C22 | C22 |
# reps | 1 | 2 | 2 | 8 | 1 | 1 | 1 | 16 | 3 | 4 | 1 | 2 | 2 |
Matrix representation of C2×M4(2)⋊C4 ►in GL8(𝔽17)
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
16 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
16 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 16 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 | 0 | 0 |
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 16 |
1 | 15 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 9 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 13 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 11 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 6 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 13 | 11 |
0 | 0 | 0 | 0 | 0 | 0 | 11 | 4 |
G:=sub<GL(8,GF(17))| [16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[16,16,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,16,16,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0],[16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16],[1,0,0,0,0,0,0,0,15,16,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,9,13,0,0,0,0,0,0,0,0,11,4,0,0,0,0,0,0,4,6,0,0,0,0,0,0,0,0,13,11,0,0,0,0,0,0,11,4] >;
C2×M4(2)⋊C4 in GAP, Magma, Sage, TeX
C_2\times M_4(2)\rtimes C_4
% in TeX
G:=Group("C2xM4(2):C4");
// GroupNames label
G:=SmallGroup(128,1642);
// by ID
G=gap.SmallGroup(128,1642);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,224,253,120,723,2804,172]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^8=c^2=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^5,d*b*d^-1=b^-1,c*d=d*c>;
// generators/relations