direct product, p-group, metabelian, nilpotent (class 3), monomial
Aliases: C2×C4.Q8, C23.56D4, C22.12SD16, (C2×C8)⋊7C4, C8⋊8(C2×C4), C4.1(C2×Q8), (C2×C4).72D4, C4.13(C4⋊C4), (C2×C4).18Q8, C2.3(C2×SD16), C4⋊C4.46C22, C4.24(C22×C4), (C22×C8).13C2, (C2×C4).67C23, (C2×C8).90C22, C22.47(C2×D4), C22.19(C4⋊C4), (C22×C4).113C22, C2.11(C2×C4⋊C4), (C2×C4⋊C4).13C2, (C2×C4).72(C2×C4), SmallGroup(64,106)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C2×C4.Q8
G = < a,b,c,d | a2=b4=1, c4=b2, d2=b-1c2, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b-1, dcd-1=c3 >
Subgroups: 97 in 65 conjugacy classes, 49 normal (11 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C8, C2×C4, C2×C4, C2×C4, C23, C4⋊C4, C4⋊C4, C2×C8, C22×C4, C22×C4, C4.Q8, C2×C4⋊C4, C22×C8, C2×C4.Q8
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C23, C4⋊C4, SD16, C22×C4, C2×D4, C2×Q8, C4.Q8, C2×C4⋊C4, C2×SD16, C2×C4.Q8
Character table of C2×C4.Q8
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | |
size | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | linear of order 2 |
ρ7 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ9 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -i | i | -i | i | i | -i | i | -i | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | linear of order 4 |
ρ10 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | i | i | -i | -i | i | i | -i | -i | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | linear of order 4 |
ρ11 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -i | i | i | -i | -i | i | i | -i | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | linear of order 4 |
ρ12 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | i | i | i | i | -i | -i | -i | -i | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | linear of order 4 |
ρ13 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -i | -i | -i | -i | i | i | i | i | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | linear of order 4 |
ρ14 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | i | -i | -i | i | i | -i | -i | i | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | linear of order 4 |
ρ15 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -i | -i | i | i | -i | -i | i | i | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | linear of order 4 |
ρ16 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | i | -i | i | -i | -i | i | -i | i | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | linear of order 4 |
ρ17 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | -2 | 2 | -2 | 2 | -2 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | -2 | -2 | -2 | 2 | 2 | -2 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ20 | 2 | 2 | -2 | 2 | 2 | -2 | -2 | -2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ21 | 2 | -2 | 2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | √-2 | -√-2 | -√-2 | √-2 | √-2 | -√-2 | √-2 | complex lifted from SD16 |
ρ22 | 2 | 2 | 2 | -2 | -2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | -√-2 | -√-2 | √-2 | √-2 | -√-2 | -√-2 | √-2 | complex lifted from SD16 |
ρ23 | 2 | -2 | 2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | -√-2 | √-2 | √-2 | -√-2 | -√-2 | √-2 | -√-2 | complex lifted from SD16 |
ρ24 | 2 | 2 | 2 | -2 | -2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | √-2 | √-2 | -√-2 | -√-2 | √-2 | √-2 | -√-2 | complex lifted from SD16 |
ρ25 | 2 | -2 | -2 | 2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | -√-2 | -√-2 | √-2 | -√-2 | √-2 | √-2 | √-2 | complex lifted from SD16 |
ρ26 | 2 | 2 | -2 | -2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | √-2 | -√-2 | -√-2 | -√-2 | -√-2 | √-2 | √-2 | complex lifted from SD16 |
ρ27 | 2 | -2 | -2 | 2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | √-2 | √-2 | -√-2 | √-2 | -√-2 | -√-2 | -√-2 | complex lifted from SD16 |
ρ28 | 2 | 2 | -2 | -2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | -√-2 | √-2 | √-2 | √-2 | √-2 | -√-2 | -√-2 | complex lifted from SD16 |
(1 19)(2 20)(3 21)(4 22)(5 23)(6 24)(7 17)(8 18)(9 48)(10 41)(11 42)(12 43)(13 44)(14 45)(15 46)(16 47)(25 38)(26 39)(27 40)(28 33)(29 34)(30 35)(31 36)(32 37)(49 60)(50 61)(51 62)(52 63)(53 64)(54 57)(55 58)(56 59)
(1 45 5 41)(2 46 6 42)(3 47 7 43)(4 48 8 44)(9 18 13 22)(10 19 14 23)(11 20 15 24)(12 21 16 17)(25 54 29 50)(26 55 30 51)(27 56 31 52)(28 49 32 53)(33 60 37 64)(34 61 38 57)(35 62 39 58)(36 63 40 59)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 61 43 36)(2 64 44 39)(3 59 45 34)(4 62 46 37)(5 57 47 40)(6 60 48 35)(7 63 41 38)(8 58 42 33)(9 30 24 49)(10 25 17 52)(11 28 18 55)(12 31 19 50)(13 26 20 53)(14 29 21 56)(15 32 22 51)(16 27 23 54)
G:=sub<Sym(64)| (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,17)(8,18)(9,48)(10,41)(11,42)(12,43)(13,44)(14,45)(15,46)(16,47)(25,38)(26,39)(27,40)(28,33)(29,34)(30,35)(31,36)(32,37)(49,60)(50,61)(51,62)(52,63)(53,64)(54,57)(55,58)(56,59), (1,45,5,41)(2,46,6,42)(3,47,7,43)(4,48,8,44)(9,18,13,22)(10,19,14,23)(11,20,15,24)(12,21,16,17)(25,54,29,50)(26,55,30,51)(27,56,31,52)(28,49,32,53)(33,60,37,64)(34,61,38,57)(35,62,39,58)(36,63,40,59), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,61,43,36)(2,64,44,39)(3,59,45,34)(4,62,46,37)(5,57,47,40)(6,60,48,35)(7,63,41,38)(8,58,42,33)(9,30,24,49)(10,25,17,52)(11,28,18,55)(12,31,19,50)(13,26,20,53)(14,29,21,56)(15,32,22,51)(16,27,23,54)>;
G:=Group( (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,17)(8,18)(9,48)(10,41)(11,42)(12,43)(13,44)(14,45)(15,46)(16,47)(25,38)(26,39)(27,40)(28,33)(29,34)(30,35)(31,36)(32,37)(49,60)(50,61)(51,62)(52,63)(53,64)(54,57)(55,58)(56,59), (1,45,5,41)(2,46,6,42)(3,47,7,43)(4,48,8,44)(9,18,13,22)(10,19,14,23)(11,20,15,24)(12,21,16,17)(25,54,29,50)(26,55,30,51)(27,56,31,52)(28,49,32,53)(33,60,37,64)(34,61,38,57)(35,62,39,58)(36,63,40,59), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,61,43,36)(2,64,44,39)(3,59,45,34)(4,62,46,37)(5,57,47,40)(6,60,48,35)(7,63,41,38)(8,58,42,33)(9,30,24,49)(10,25,17,52)(11,28,18,55)(12,31,19,50)(13,26,20,53)(14,29,21,56)(15,32,22,51)(16,27,23,54) );
G=PermutationGroup([[(1,19),(2,20),(3,21),(4,22),(5,23),(6,24),(7,17),(8,18),(9,48),(10,41),(11,42),(12,43),(13,44),(14,45),(15,46),(16,47),(25,38),(26,39),(27,40),(28,33),(29,34),(30,35),(31,36),(32,37),(49,60),(50,61),(51,62),(52,63),(53,64),(54,57),(55,58),(56,59)], [(1,45,5,41),(2,46,6,42),(3,47,7,43),(4,48,8,44),(9,18,13,22),(10,19,14,23),(11,20,15,24),(12,21,16,17),(25,54,29,50),(26,55,30,51),(27,56,31,52),(28,49,32,53),(33,60,37,64),(34,61,38,57),(35,62,39,58),(36,63,40,59)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,61,43,36),(2,64,44,39),(3,59,45,34),(4,62,46,37),(5,57,47,40),(6,60,48,35),(7,63,41,38),(8,58,42,33),(9,30,24,49),(10,25,17,52),(11,28,18,55),(12,31,19,50),(13,26,20,53),(14,29,21,56),(15,32,22,51),(16,27,23,54)]])
C2×C4.Q8 is a maximal subgroup of
C8.11C42 C8.C42 C8⋊C42 C24.133D4 C24.67D4 C4○D4.4Q8 C42.58Q8 C42.60Q8 C42.26Q8 C24.159D4 C24.71D4 D4⋊(C4⋊C4) Q8⋊C4⋊C4 C4.Q8⋊9C4 C4.Q8⋊10C4 C4.67(C4×D4) C4.68(C4×D4) C8⋊7(C4⋊C4) C4.(C4×Q8) C8⋊(C4⋊C4) C42.30Q8 C42.31Q8 M4(2).5Q8 (C2×C4)⋊9SD16 (C2×Q16)⋊10C4 (C2×D8)⋊10C4 C24.84D4 C24.85D4 (C2×C8)⋊Q8 C2.(C8⋊Q8) C4⋊C4.106D4 (C2×Q8).8Q8 C24.89D4 (C2×C8).165D4 C2.(C8⋊3Q8) (C2×C8).24Q8 C4.(C4⋊Q8) M4(2).2Q8 (C2×C8).168D4 (C2×C8).169D4 (C2×C8).170D4 (C2×C8).171D4 C4○D4.7Q8 C2×C4×SD16 C42.281C23 (C2×C8)⋊13D4 C42.23C23 (C2×D4).304D4 M4(2)⋊3Q8 D4⋊9SD16 C42.486C23 C42.58C23 C42.59C23
C2×C4.Q8 is a maximal quotient of
C8⋊8M4(2) C42.90D4 C24.133D4 C42.55Q8 C42.58Q8 C24.159D4 C42.30Q8 M5(2)⋊3C4
Matrix representation of C2×C4.Q8 ►in GL4(𝔽17) generated by
16 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 0 | 16 |
16 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 16 | 0 |
1 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 5 | 12 |
0 | 0 | 5 | 5 |
4 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 6 | 13 |
0 | 0 | 13 | 11 |
G:=sub<GL(4,GF(17))| [16,0,0,0,0,16,0,0,0,0,16,0,0,0,0,16],[16,0,0,0,0,1,0,0,0,0,0,16,0,0,1,0],[1,0,0,0,0,16,0,0,0,0,5,5,0,0,12,5],[4,0,0,0,0,16,0,0,0,0,6,13,0,0,13,11] >;
C2×C4.Q8 in GAP, Magma, Sage, TeX
C_2\times C_4.Q_8
% in TeX
G:=Group("C2xC4.Q8");
// GroupNames label
G:=SmallGroup(64,106);
// by ID
G=gap.SmallGroup(64,106);
# by ID
G:=PCGroup([6,-2,2,2,-2,2,-2,96,121,55,963,117]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^4=1,c^4=b^2,d^2=b^-1*c^2,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=c^3>;
// generators/relations
Export