Extensions 1→N→G→Q→1 with N=C8 and Q=M4(2)

Direct product G=N×Q with N=C8 and Q=M4(2)
dρLabelID
C8×M4(2)64C8xM4(2)128,181

Semidirect products G=N:Q with N=C8 and Q=M4(2)
extensionφ:Q→Aut NdρLabelID
C81M4(2) = C81M4(2)φ: M4(2)/C4C22 ⊆ Aut C864C8:1M4(2)128,301
C82M4(2) = C8⋊M4(2)φ: M4(2)/C4C22 ⊆ Aut C864C8:2M4(2)128,324
C83M4(2) = C83M4(2)φ: M4(2)/C4C22 ⊆ Aut C864C8:3M4(2)128,326
C84M4(2) = C86D8φ: M4(2)/C8C2 ⊆ Aut C864C8:4M4(2)128,321
C85M4(2) = C89SD16φ: M4(2)/C8C2 ⊆ Aut C864C8:5M4(2)128,322
C86M4(2) = C86M4(2)φ: M4(2)/C8C2 ⊆ Aut C864C8:6M4(2)128,187
C87M4(2) = C87M4(2)φ: M4(2)/C2×C4C2 ⊆ Aut C864C8:7M4(2)128,299
C88M4(2) = C88M4(2)φ: M4(2)/C2×C4C2 ⊆ Aut C864C8:8M4(2)128,298
C89M4(2) = C89M4(2)φ: M4(2)/C2×C4C2 ⊆ Aut C864C8:9M4(2)128,183

Non-split extensions G=N.Q with N=C8 and Q=M4(2)
extensionφ:Q→Aut NdρLabelID
C8.1M4(2) = D8⋊C8φ: M4(2)/C4C22 ⊆ Aut C864C8.1M4(2)128,65
C8.2M4(2) = Q16⋊C8φ: M4(2)/C4C22 ⊆ Aut C8128C8.2M4(2)128,66
C8.3M4(2) = C8.32D8φ: M4(2)/C4C22 ⊆ Aut C8164C8.3M4(2)128,68
C8.4M4(2) = C8.M4(2)φ: M4(2)/C4C22 ⊆ Aut C8128C8.4M4(2)128,325
C8.5M4(2) = C8.5M4(2)φ: M4(2)/C4C22 ⊆ Aut C8164C8.5M4(2)128,897
C8.6M4(2) = C4.16D16φ: M4(2)/C8C2 ⊆ Aut C864C8.6M4(2)128,63
C8.7M4(2) = Q161C8φ: M4(2)/C8C2 ⊆ Aut C8128C8.7M4(2)128,64
C8.8M4(2) = C86Q16φ: M4(2)/C8C2 ⊆ Aut C8128C8.8M4(2)128,323
C8.9M4(2) = C8≀C2φ: M4(2)/C8C2 ⊆ Aut C8162C8.9M4(2)128,67
C8.10M4(2) = D4.C16φ: M4(2)/C8C2 ⊆ Aut C8642C8.10M4(2)128,133
C8.11M4(2) = C8215C2φ: M4(2)/C8C2 ⊆ Aut C864C8.11M4(2)128,185
C8.12M4(2) = C8.12M4(2)φ: M4(2)/C8C2 ⊆ Aut C864C8.12M4(2)128,896
C8.13M4(2) = C16.C8φ: M4(2)/C2×C4C2 ⊆ Aut C8324C8.13M4(2)128,101
C8.14M4(2) = C163C8φ: M4(2)/C2×C4C2 ⊆ Aut C8128C8.14M4(2)128,103
C8.15M4(2) = C164C8φ: M4(2)/C2×C4C2 ⊆ Aut C8128C8.15M4(2)128,104
C8.16M4(2) = C42.43Q8φ: M4(2)/C2×C4C2 ⊆ Aut C864C8.16M4(2)128,300
C8.17M4(2) = C161C8φ: M4(2)/C2×C4C2 ⊆ Aut C8128C8.17M4(2)128,100
C8.18M4(2) = C16.3C8φ: M4(2)/C2×C4C2 ⊆ Aut C8322C8.18M4(2)128,105
C8.19M4(2) = C8.19M4(2)φ: M4(2)/C2×C4C2 ⊆ Aut C8324C8.19M4(2)128,898
C8.20M4(2) = C16⋊C8φ: M4(2)/C2×C4C2 ⊆ Aut C8128C8.20M4(2)128,45
C8.21M4(2) = C23.C16φ: M4(2)/C2×C4C2 ⊆ Aut C8324C8.21M4(2)128,132
C8.22M4(2) = C8.C16φ: M4(2)/C2×C4C2 ⊆ Aut C8322C8.22M4(2)128,154
C8.23M4(2) = C42.6C8φ: M4(2)/C2×C4C2 ⊆ Aut C864C8.23M4(2)128,895
C8.24M4(2) = C8⋊C16central extension (φ=1)128C8.24M4(2)128,44
C8.25M4(2) = C22⋊C32central extension (φ=1)64C8.25M4(2)128,131
C8.26M4(2) = C4⋊C32central extension (φ=1)128C8.26M4(2)128,153
C8.27M4(2) = C42.13C8central extension (φ=1)64C8.27M4(2)128,894

׿
×
𝔽