Copied to
clipboard

G = C8:7M4(2)  order 128 = 27

1st semidirect product of C8 and M4(2) acting via M4(2)/C2xC4=C2

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C8:7M4(2), C42.51Q8, C42.320D4, C42.624C23, (C4xC8).19C4, C8:1C8:25C2, (C2xC4).72D8, C4.83(C2xD8), (C2xC4).34Q16, C4.55(C2xQ16), (C22xC8).34C4, C4.14(C2.D8), C4.6(C8.C4), (C22xC4).82Q8, C4:C8.215C22, C23.50(C4:C4), C42.311(C2xC4), (C4xC8).390C22, (C22xC4).575D4, C4.44(C2xM4(2)), C22.12(C2.D8), C4:M4(2).21C2, C2.7(C4:M4(2)), (C2xC42).1042C22, (C2xC4xC8).32C2, C2.4(C2xC2.D8), (C2xC4).75(C4:C4), (C2xC8).220(C2xC4), C2.7(C2xC8.C4), C22.81(C2xC4:C4), (C2xC4).151(C2xQ8), (C2xC4).1460(C2xD4), (C2xC4).506(C22xC4), (C22xC4).475(C2xC4), SmallGroup(128,299)

Series: Derived Chief Lower central Upper central Jennings

C1C2xC4 — C8:7M4(2)
C1C2C22C2xC4C42C2xC42C2xC4xC8 — C8:7M4(2)
C1C2C2xC4 — C8:7M4(2)
C1C2xC4C2xC42 — C8:7M4(2)
C1C22C22C42 — C8:7M4(2)

Generators and relations for C8:7M4(2)
 G = < a,b,c | a8=b8=c2=1, bab-1=a-1, ac=ca, cbc=b5 >

Subgroups: 140 in 92 conjugacy classes, 60 normal (26 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C22, C8, C8, C2xC4, C2xC4, C2xC4, C23, C42, C2xC8, C2xC8, M4(2), C22xC4, C4xC8, C4xC8, C4:C8, C4:C8, C2xC42, C22xC8, C2xM4(2), C8:1C8, C2xC4xC8, C4:M4(2), C8:7M4(2)
Quotients: C1, C2, C4, C22, C2xC4, D4, Q8, C23, C4:C4, M4(2), D8, Q16, C22xC4, C2xD4, C2xQ8, C2.D8, C8.C4, C2xC4:C4, C2xM4(2), C2xD8, C2xQ16, C4:M4(2), C2xC2.D8, C2xC8.C4, C8:7M4(2)

Smallest permutation representation of C8:7M4(2)
On 64 points
Generators in S64
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 16 48 26 39 60 54 19)(2 15 41 25 40 59 55 18)(3 14 42 32 33 58 56 17)(4 13 43 31 34 57 49 24)(5 12 44 30 35 64 50 23)(6 11 45 29 36 63 51 22)(7 10 46 28 37 62 52 21)(8 9 47 27 38 61 53 20)
(9 61)(10 62)(11 63)(12 64)(13 57)(14 58)(15 59)(16 60)(17 32)(18 25)(19 26)(20 27)(21 28)(22 29)(23 30)(24 31)

G:=sub<Sym(64)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,16,48,26,39,60,54,19)(2,15,41,25,40,59,55,18)(3,14,42,32,33,58,56,17)(4,13,43,31,34,57,49,24)(5,12,44,30,35,64,50,23)(6,11,45,29,36,63,51,22)(7,10,46,28,37,62,52,21)(8,9,47,27,38,61,53,20), (9,61)(10,62)(11,63)(12,64)(13,57)(14,58)(15,59)(16,60)(17,32)(18,25)(19,26)(20,27)(21,28)(22,29)(23,30)(24,31)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,16,48,26,39,60,54,19)(2,15,41,25,40,59,55,18)(3,14,42,32,33,58,56,17)(4,13,43,31,34,57,49,24)(5,12,44,30,35,64,50,23)(6,11,45,29,36,63,51,22)(7,10,46,28,37,62,52,21)(8,9,47,27,38,61,53,20), (9,61)(10,62)(11,63)(12,64)(13,57)(14,58)(15,59)(16,60)(17,32)(18,25)(19,26)(20,27)(21,28)(22,29)(23,30)(24,31) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,16,48,26,39,60,54,19),(2,15,41,25,40,59,55,18),(3,14,42,32,33,58,56,17),(4,13,43,31,34,57,49,24),(5,12,44,30,35,64,50,23),(6,11,45,29,36,63,51,22),(7,10,46,28,37,62,52,21),(8,9,47,27,38,61,53,20)], [(9,61),(10,62),(11,63),(12,64),(13,57),(14,58),(15,59),(16,60),(17,32),(18,25),(19,26),(20,27),(21,28),(22,29),(23,30),(24,31)]])

44 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E···4N8A···8P8Q···8X
order12222244444···48···88···8
size11112211112···22···28···8

44 irreducible representations

dim11111122222222
type+++++-+-+-
imageC1C2C2C2C4C4D4Q8D4Q8M4(2)D8Q16C8.C4
kernelC8:7M4(2)C8:1C8C2xC4xC8C4:M4(2)C4xC8C22xC8C42C42C22xC4C22xC4C8C2xC4C2xC4C4
# reps14124411118448

Matrix representation of C8:7M4(2) in GL4(F17) generated by

8000
01500
0090
00152
,
0100
13000
001415
0043
,
1000
01600
0010
0001
G:=sub<GL(4,GF(17))| [8,0,0,0,0,15,0,0,0,0,9,15,0,0,0,2],[0,13,0,0,1,0,0,0,0,0,14,4,0,0,15,3],[1,0,0,0,0,16,0,0,0,0,1,0,0,0,0,1] >;

C8:7M4(2) in GAP, Magma, Sage, TeX

C_8\rtimes_7M_4(2)
% in TeX

G:=Group("C8:7M4(2)");
// GroupNames label

G:=SmallGroup(128,299);
// by ID

G=gap.SmallGroup(128,299);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,2,112,141,288,1430,1123,136,172]);
// Polycyclic

G:=Group<a,b,c|a^8=b^8=c^2=1,b*a*b^-1=a^-1,a*c=c*a,c*b*c=b^5>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<