p-group, metabelian, nilpotent (class 3), monomial
Aliases: C8.5M4(2), C23.18M4(2), M5(2).10C22, (C4×C8).10C4, C16⋊C4⋊4C2, C8⋊C4.8C4, C8.C8⋊11C2, C8.84(C4○D4), C42.28(C2×C4), (C2×C42).26C4, C23.C8.6C2, (C2×C8).386C23, (C4×C8).158C22, (C4×M4(2)).3C2, (C2×C4).32M4(2), C4.51(C2×M4(2)), (C2×M4(2)).15C4, C8⋊C4.150C22, C4.87(C42⋊C2), C22.25(C2×M4(2)), C2.10(C42.6C4), (C2×M4(2)).330C22, (C2×C8).15(C2×C4), (C22×C4).85(C2×C4), (C2×C4).562(C22×C4), SmallGroup(128,897)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
C1 — C4 — C8⋊C4 — C8.5M4(2) |
Generators and relations for C8.5M4(2)
G = < a,b,c | a8=1, b8=c2=a4, bab-1=a3, cac-1=a5, cbc-1=a6b5 >
Subgroups: 100 in 64 conjugacy classes, 38 normal (24 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C8, C2×C4, C2×C4, C23, C16, C42, C42, C2×C8, M4(2), C22×C4, C22×C4, C4×C8, C8⋊C4, M5(2), C2×C42, C2×M4(2), C16⋊C4, C23.C8, C8.C8, C4×M4(2), C8.5M4(2)
Quotients: C1, C2, C4, C22, C2×C4, C23, M4(2), C22×C4, C4○D4, C42⋊C2, C2×M4(2), C42.6C4, C8.5M4(2)
(1 7 13 3 9 15 5 11)(2 4 6 8 10 12 14 16)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)
(1 13 9 5)(2 6 10 14)(3 7 11 15)(4 16 12 8)
G:=sub<Sym(16)| (1,7,13,3,9,15,5,11)(2,4,6,8,10,12,14,16), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16), (1,13,9,5)(2,6,10,14)(3,7,11,15)(4,16,12,8)>;
G:=Group( (1,7,13,3,9,15,5,11)(2,4,6,8,10,12,14,16), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16), (1,13,9,5)(2,6,10,14)(3,7,11,15)(4,16,12,8) );
G=PermutationGroup([[(1,7,13,3,9,15,5,11),(2,4,6,8,10,12,14,16)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)], [(1,13,9,5),(2,6,10,14),(3,7,11,15),(4,16,12,8)]])
G:=TransitiveGroup(16,220);
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | ··· | 4G | 4H | 4I | 4J | 8A | 8B | 8C | 8D | 8E | ··· | 8J | 16A | ··· | 16H |
order | 1 | 2 | 2 | 2 | 4 | 4 | 4 | ··· | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | ··· | 8 | 16 | ··· | 16 |
size | 1 | 1 | 2 | 4 | 1 | 1 | 2 | ··· | 2 | 4 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 8 | ··· | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | |||||||||
image | C1 | C2 | C2 | C2 | C2 | C4 | C4 | C4 | C4 | M4(2) | C4○D4 | M4(2) | M4(2) | C8.5M4(2) |
kernel | C8.5M4(2) | C16⋊C4 | C23.C8 | C8.C8 | C4×M4(2) | C4×C8 | C8⋊C4 | C2×C42 | C2×M4(2) | C8 | C8 | C2×C4 | C23 | C1 |
# reps | 1 | 2 | 2 | 2 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 2 | 2 | 4 |
Matrix representation of C8.5M4(2) ►in GL4(𝔽5) generated by
3 | 4 | 1 | 0 |
3 | 4 | 0 | 2 |
3 | 0 | 1 | 4 |
0 | 4 | 3 | 2 |
3 | 4 | 3 | 1 |
0 | 4 | 1 | 1 |
3 | 4 | 2 | 3 |
4 | 0 | 1 | 1 |
3 | 3 | 1 | 0 |
0 | 1 | 1 | 0 |
0 | 3 | 4 | 0 |
0 | 4 | 1 | 2 |
G:=sub<GL(4,GF(5))| [3,3,3,0,4,4,0,4,1,0,1,3,0,2,4,2],[3,0,3,4,4,4,4,0,3,1,2,1,1,1,3,1],[3,0,0,0,3,1,3,4,1,1,4,1,0,0,0,2] >;
C8.5M4(2) in GAP, Magma, Sage, TeX
C_8._5M_4(2)
% in TeX
G:=Group("C8.5M4(2)");
// GroupNames label
G:=SmallGroup(128,897);
// by ID
G=gap.SmallGroup(128,897);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,-2,112,141,758,58,2019,1411,718,102,124]);
// Polycyclic
G:=Group<a,b,c|a^8=1,b^8=c^2=a^4,b*a*b^-1=a^3,c*a*c^-1=a^5,c*b*c^-1=a^6*b^5>;
// generators/relations