Copied to
clipboard

G = C2×C23.38C23order 128 = 27

Direct product of C2 and C23.38C23

direct product, p-group, metabelian, nilpotent (class 2), monomial, rational

Aliases: C2×C23.38C23, C22.36C25, C24.479C23, C23.116C24, C42.540C23, C22.732- 1+4, C4⋊Q873C22, (Q8×C23)⋊9C2, (C2×C4).39C24, C2.15(D4×C23), C4⋊C4.280C23, C23.709(C2×D4), C4.171(C22×D4), (C22×C4).535D4, C22⋊C4.4C23, C22⋊Q872C22, (C2×D4).447C23, C4.4D463C22, (C2×Q8).421C23, (C22×Q8)⋊59C22, C22.49(C22×D4), C42⋊C287C22, C2.4(C2×2- 1+4), (C23×C4).582C22, (C2×C42).916C22, (C22×C4).1585C23, (C22×D4).585C22, C22.D431C22, (C2×C4⋊Q8)⋊46C2, (C2×C4).661(C2×D4), (C2×C22⋊Q8)⋊61C2, (C2×C4.4D4)⋊46C2, (C2×C42⋊C2)⋊54C2, (C2×C4⋊C4).699C22, (C22×C4○D4).27C2, (C2×C4○D4).321C22, (C2×C22.D4)⋊49C2, (C2×C22⋊C4).373C22, SmallGroup(128,2179)

Series: Derived Chief Lower central Upper central Jennings

C1C22 — C2×C23.38C23
C1C2C22C23C24C23×C4Q8×C23 — C2×C23.38C23
C1C22 — C2×C23.38C23
C1C23 — C2×C23.38C23
C1C22 — C2×C23.38C23

Generators and relations for C2×C23.38C23
 G = < a,b,c,d,e,f,g | a2=b2=c2=d2=e2=1, f2=g2=c, ab=ba, ac=ca, ad=da, ae=ea, af=fa, ag=ga, ebe=bc=cb, bd=db, bf=fb, bg=gb, cd=dc, fef-1=ce=ec, gfg-1=cf=fc, cg=gc, geg-1=de=ed, df=fd, dg=gd >

Subgroups: 1100 in 756 conjugacy classes, 436 normal (14 characteristic)
C1, C2, C2 [×6], C2 [×8], C4 [×8], C4 [×20], C22, C22 [×10], C22 [×32], C2×C4 [×48], C2×C4 [×52], D4 [×24], Q8 [×40], C23, C23 [×10], C23 [×16], C42 [×8], C22⋊C4 [×40], C4⋊C4 [×40], C22×C4 [×2], C22×C4 [×38], C22×C4 [×16], C2×D4 [×12], C2×D4 [×12], C2×Q8 [×20], C2×Q8 [×52], C4○D4 [×32], C24, C24 [×2], C2×C42 [×2], C2×C22⋊C4 [×10], C2×C4⋊C4 [×10], C42⋊C2 [×8], C22⋊Q8 [×32], C22.D4 [×32], C4.4D4 [×16], C4⋊Q8 [×16], C23×C4, C23×C4 [×4], C22×D4, C22×D4 [×2], C22×Q8, C22×Q8 [×12], C22×Q8 [×8], C2×C4○D4 [×8], C2×C4○D4 [×8], C2×C42⋊C2, C2×C22⋊Q8 [×4], C2×C22.D4 [×4], C2×C4.4D4 [×2], C2×C4⋊Q8 [×2], C23.38C23 [×16], Q8×C23, C22×C4○D4, C2×C23.38C23
Quotients: C1, C2 [×31], C22 [×155], D4 [×8], C23 [×155], C2×D4 [×28], C24 [×31], C22×D4 [×14], 2- 1+4 [×4], C25, C23.38C23 [×4], D4×C23, C2×2- 1+4 [×2], C2×C23.38C23

Smallest permutation representation of C2×C23.38C23
On 64 points
Generators in S64
(1 49)(2 50)(3 51)(4 52)(5 20)(6 17)(7 18)(8 19)(9 55)(10 56)(11 53)(12 54)(13 63)(14 64)(15 61)(16 62)(21 59)(22 60)(23 57)(24 58)(25 43)(26 44)(27 41)(28 42)(29 35)(30 36)(31 33)(32 34)(37 48)(38 45)(39 46)(40 47)
(1 35)(2 36)(3 33)(4 34)(5 10)(6 11)(7 12)(8 9)(13 41)(14 42)(15 43)(16 44)(17 53)(18 54)(19 55)(20 56)(21 45)(22 46)(23 47)(24 48)(25 61)(26 62)(27 63)(28 64)(29 49)(30 50)(31 51)(32 52)(37 58)(38 59)(39 60)(40 57)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)(49 51)(50 52)(53 55)(54 56)(57 59)(58 60)(61 63)(62 64)
(1 19)(2 20)(3 17)(4 18)(5 50)(6 51)(7 52)(8 49)(9 29)(10 30)(11 31)(12 32)(13 40)(14 37)(15 38)(16 39)(21 25)(22 26)(23 27)(24 28)(33 53)(34 54)(35 55)(36 56)(41 57)(42 58)(43 59)(44 60)(45 61)(46 62)(47 63)(48 64)
(1 6)(2 5)(3 8)(4 7)(9 35)(10 34)(11 33)(12 36)(13 63)(14 62)(15 61)(16 64)(17 49)(18 52)(19 51)(20 50)(21 57)(22 60)(23 59)(24 58)(25 41)(26 44)(27 43)(28 42)(29 55)(30 54)(31 53)(32 56)(37 46)(38 45)(39 48)(40 47)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 41 3 43)(2 44 4 42)(5 22 7 24)(6 21 8 23)(9 47 11 45)(10 46 12 48)(13 33 15 35)(14 36 16 34)(17 59 19 57)(18 58 20 60)(25 49 27 51)(26 52 28 50)(29 63 31 61)(30 62 32 64)(37 56 39 54)(38 55 40 53)

G:=sub<Sym(64)| (1,49)(2,50)(3,51)(4,52)(5,20)(6,17)(7,18)(8,19)(9,55)(10,56)(11,53)(12,54)(13,63)(14,64)(15,61)(16,62)(21,59)(22,60)(23,57)(24,58)(25,43)(26,44)(27,41)(28,42)(29,35)(30,36)(31,33)(32,34)(37,48)(38,45)(39,46)(40,47), (1,35)(2,36)(3,33)(4,34)(5,10)(6,11)(7,12)(8,9)(13,41)(14,42)(15,43)(16,44)(17,53)(18,54)(19,55)(20,56)(21,45)(22,46)(23,47)(24,48)(25,61)(26,62)(27,63)(28,64)(29,49)(30,50)(31,51)(32,52)(37,58)(38,59)(39,60)(40,57), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,19)(2,20)(3,17)(4,18)(5,50)(6,51)(7,52)(8,49)(9,29)(10,30)(11,31)(12,32)(13,40)(14,37)(15,38)(16,39)(21,25)(22,26)(23,27)(24,28)(33,53)(34,54)(35,55)(36,56)(41,57)(42,58)(43,59)(44,60)(45,61)(46,62)(47,63)(48,64), (1,6)(2,5)(3,8)(4,7)(9,35)(10,34)(11,33)(12,36)(13,63)(14,62)(15,61)(16,64)(17,49)(18,52)(19,51)(20,50)(21,57)(22,60)(23,59)(24,58)(25,41)(26,44)(27,43)(28,42)(29,55)(30,54)(31,53)(32,56)(37,46)(38,45)(39,48)(40,47), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,41,3,43)(2,44,4,42)(5,22,7,24)(6,21,8,23)(9,47,11,45)(10,46,12,48)(13,33,15,35)(14,36,16,34)(17,59,19,57)(18,58,20,60)(25,49,27,51)(26,52,28,50)(29,63,31,61)(30,62,32,64)(37,56,39,54)(38,55,40,53)>;

G:=Group( (1,49)(2,50)(3,51)(4,52)(5,20)(6,17)(7,18)(8,19)(9,55)(10,56)(11,53)(12,54)(13,63)(14,64)(15,61)(16,62)(21,59)(22,60)(23,57)(24,58)(25,43)(26,44)(27,41)(28,42)(29,35)(30,36)(31,33)(32,34)(37,48)(38,45)(39,46)(40,47), (1,35)(2,36)(3,33)(4,34)(5,10)(6,11)(7,12)(8,9)(13,41)(14,42)(15,43)(16,44)(17,53)(18,54)(19,55)(20,56)(21,45)(22,46)(23,47)(24,48)(25,61)(26,62)(27,63)(28,64)(29,49)(30,50)(31,51)(32,52)(37,58)(38,59)(39,60)(40,57), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,19)(2,20)(3,17)(4,18)(5,50)(6,51)(7,52)(8,49)(9,29)(10,30)(11,31)(12,32)(13,40)(14,37)(15,38)(16,39)(21,25)(22,26)(23,27)(24,28)(33,53)(34,54)(35,55)(36,56)(41,57)(42,58)(43,59)(44,60)(45,61)(46,62)(47,63)(48,64), (1,6)(2,5)(3,8)(4,7)(9,35)(10,34)(11,33)(12,36)(13,63)(14,62)(15,61)(16,64)(17,49)(18,52)(19,51)(20,50)(21,57)(22,60)(23,59)(24,58)(25,41)(26,44)(27,43)(28,42)(29,55)(30,54)(31,53)(32,56)(37,46)(38,45)(39,48)(40,47), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,41,3,43)(2,44,4,42)(5,22,7,24)(6,21,8,23)(9,47,11,45)(10,46,12,48)(13,33,15,35)(14,36,16,34)(17,59,19,57)(18,58,20,60)(25,49,27,51)(26,52,28,50)(29,63,31,61)(30,62,32,64)(37,56,39,54)(38,55,40,53) );

G=PermutationGroup([(1,49),(2,50),(3,51),(4,52),(5,20),(6,17),(7,18),(8,19),(9,55),(10,56),(11,53),(12,54),(13,63),(14,64),(15,61),(16,62),(21,59),(22,60),(23,57),(24,58),(25,43),(26,44),(27,41),(28,42),(29,35),(30,36),(31,33),(32,34),(37,48),(38,45),(39,46),(40,47)], [(1,35),(2,36),(3,33),(4,34),(5,10),(6,11),(7,12),(8,9),(13,41),(14,42),(15,43),(16,44),(17,53),(18,54),(19,55),(20,56),(21,45),(22,46),(23,47),(24,48),(25,61),(26,62),(27,63),(28,64),(29,49),(30,50),(31,51),(32,52),(37,58),(38,59),(39,60),(40,57)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48),(49,51),(50,52),(53,55),(54,56),(57,59),(58,60),(61,63),(62,64)], [(1,19),(2,20),(3,17),(4,18),(5,50),(6,51),(7,52),(8,49),(9,29),(10,30),(11,31),(12,32),(13,40),(14,37),(15,38),(16,39),(21,25),(22,26),(23,27),(24,28),(33,53),(34,54),(35,55),(36,56),(41,57),(42,58),(43,59),(44,60),(45,61),(46,62),(47,63),(48,64)], [(1,6),(2,5),(3,8),(4,7),(9,35),(10,34),(11,33),(12,36),(13,63),(14,62),(15,61),(16,64),(17,49),(18,52),(19,51),(20,50),(21,57),(22,60),(23,59),(24,58),(25,41),(26,44),(27,43),(28,42),(29,55),(30,54),(31,53),(32,56),(37,46),(38,45),(39,48),(40,47)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,41,3,43),(2,44,4,42),(5,22,7,24),(6,21,8,23),(9,47,11,45),(10,46,12,48),(13,33,15,35),(14,36,16,34),(17,59,19,57),(18,58,20,60),(25,49,27,51),(26,52,28,50),(29,63,31,61),(30,62,32,64),(37,56,39,54),(38,55,40,53)])

44 conjugacy classes

class 1 2A···2G2H2I2J2K2L2M2N2O4A···4H4I···4AB
order12···2222222224···44···4
size11···1222244442···24···4

44 irreducible representations

dim11111111124
type++++++++++-
imageC1C2C2C2C2C2C2C2C2D42- 1+4
kernelC2×C23.38C23C2×C42⋊C2C2×C22⋊Q8C2×C22.D4C2×C4.4D4C2×C4⋊Q8C23.38C23Q8×C23C22×C4○D4C22×C4C22
# reps114422161184

Matrix representation of C2×C23.38C23 in GL8(𝔽5)

10000000
01000000
00400000
00040000
00001000
00000100
00000010
00000001
,
40000000
04000000
00100000
00010000
00000100
00001000
00000001
00000010
,
10000000
01000000
00100000
00010000
00004000
00000400
00000040
00000004
,
40000000
04000000
00400000
00040000
00004000
00000400
00000040
00000004
,
40000000
01000000
00100000
00040000
00001000
00000400
00002040
00000301
,
10000000
01000000
00400000
00040000
00000300
00003000
00000102
00001020
,
04000000
40000000
00010000
00100000
00002030
00000203
00000030
00000003

G:=sub<GL(8,GF(5))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,2,0,0,0,0,0,0,4,0,3,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,3,0,1,0,0,0,0,3,0,1,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,2,0],[0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,3,0,3,0,0,0,0,0,0,3,0,3] >;

C2×C23.38C23 in GAP, Magma, Sage, TeX

C_2\times C_2^3._{38}C_2^3
% in TeX

G:=Group("C2xC2^3.38C2^3");
// GroupNames label

G:=SmallGroup(128,2179);
// by ID

G=gap.SmallGroup(128,2179);
# by ID

G:=PCGroup([7,-2,2,2,2,2,-2,2,477,232,1430,387,184,1123]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=e^2=1,f^2=g^2=c,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,e*b*e=b*c=c*b,b*d=d*b,b*f=f*b,b*g=g*b,c*d=d*c,f*e*f^-1=c*e=e*c,g*f*g^-1=c*f=f*c,c*g=g*c,g*e*g^-1=d*e=e*d,d*f=f*d,d*g=g*d>;
// generators/relations

׿
×
𝔽