Extensions 1→N→G→Q→1 with N=C22 and Q=D18

Direct product G=N×Q with N=C22 and Q=D18

Semidirect products G=N:Q with N=C22 and Q=D18
extensionφ:Q→Aut NdρLabelID
C22⋊D18 = C2×C3.S4φ: D18/C6S3 ⊆ Aut C22186+C2^2:D18144,109
C222D18 = D4×D9φ: D18/D9C2 ⊆ Aut C22364+C2^2:2D18144,41
C223D18 = C2×C9⋊D4φ: D18/C18C2 ⊆ Aut C2272C2^2:3D18144,46

Non-split extensions G=N.Q with N=C22 and Q=D18
extensionφ:Q→Aut NdρLabelID
C22.1D18 = D42D9φ: D18/D9C2 ⊆ Aut C22724-C2^2.1D18144,42
C22.2D18 = D365C2φ: D18/C18C2 ⊆ Aut C22722C2^2.2D18144,40
C22.3D18 = C4×Dic9central extension (φ=1)144C2^2.3D18144,11
C22.4D18 = Dic9⋊C4central extension (φ=1)144C2^2.4D18144,12
C22.5D18 = C4⋊Dic9central extension (φ=1)144C2^2.5D18144,13
C22.6D18 = D18⋊C4central extension (φ=1)72C2^2.6D18144,14
C22.7D18 = C18.D4central extension (φ=1)72C2^2.7D18144,19
C22.8D18 = C2×Dic18central extension (φ=1)144C2^2.8D18144,37
C22.9D18 = C2×C4×D9central extension (φ=1)72C2^2.9D18144,38
C22.10D18 = C2×D36central extension (φ=1)72C2^2.10D18144,39
C22.11D18 = C22×Dic9central extension (φ=1)144C2^2.11D18144,45