non-abelian, supersoluble, monomial
Aliases: 3- 1+2.S3, (C3×C9).2S3, C3.He3⋊C2, C32.4(C3⋊S3), C3.5(He3⋊C2), SmallGroup(162,22)
Series: Derived ►Chief ►Lower central ►Upper central
C3.He3 — 3- 1+2.S3 |
Generators and relations for 3- 1+2.S3
G = < a,b,c,d | a9=b3=d2=1, c3=a6, bab-1=a4, cac-1=a7b, dad=a5b-1, cbc-1=a3b, bd=db, dcd=a3c2 >
Character table of 3- 1+2.S3
class | 1 | 2 | 3A | 3B | 3C | 6A | 6B | 9A | 9B | 9C | 9D | 9E | 9F | |
size | 1 | 27 | 2 | 3 | 3 | 27 | 27 | 6 | 6 | 6 | 18 | 18 | 18 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 2 | 0 | 2 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | 2 | orthogonal lifted from S3 |
ρ4 | 2 | 0 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ5 | 2 | 0 | 2 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | 2 | -1 | -1 | orthogonal lifted from S3 |
ρ6 | 2 | 0 | 2 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | -1 | 2 | -1 | orthogonal lifted from S3 |
ρ7 | 3 | -1 | 3 | -3+3√-3/2 | -3-3√-3/2 | ζ65 | ζ6 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from He3⋊C2 |
ρ8 | 3 | -1 | 3 | -3-3√-3/2 | -3+3√-3/2 | ζ6 | ζ65 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from He3⋊C2 |
ρ9 | 3 | 1 | 3 | -3-3√-3/2 | -3+3√-3/2 | ζ32 | ζ3 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from He3⋊C2 |
ρ10 | 3 | 1 | 3 | -3+3√-3/2 | -3-3√-3/2 | ζ3 | ζ32 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from He3⋊C2 |
ρ11 | 6 | 0 | -3 | 0 | 0 | 0 | 0 | -ζ98+2ζ97+ζ94+ζ92 | ζ95+2ζ94-ζ92+ζ9 | 2ζ98-ζ94+ζ92+ζ9 | 0 | 0 | 0 | orthogonal faithful |
ρ12 | 6 | 0 | -3 | 0 | 0 | 0 | 0 | 2ζ98-ζ94+ζ92+ζ9 | -ζ98+2ζ97+ζ94+ζ92 | ζ95+2ζ94-ζ92+ζ9 | 0 | 0 | 0 | orthogonal faithful |
ρ13 | 6 | 0 | -3 | 0 | 0 | 0 | 0 | ζ95+2ζ94-ζ92+ζ9 | 2ζ98-ζ94+ζ92+ζ9 | -ζ98+2ζ97+ζ94+ζ92 | 0 | 0 | 0 | orthogonal faithful |
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)
(2 8 5)(3 6 9)(10 13 16)(12 18 15)(19 25 22)(20 23 26)
(1 23 15 7 20 12 4 26 18)(2 21 16 8 27 13 5 24 10)(3 22 14 9 19 11 6 25 17)
(2 3)(4 7)(5 9)(6 8)(10 22)(11 27)(12 20)(13 19)(14 24)(15 26)(16 25)(17 21)(18 23)
G:=sub<Sym(27)| (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27), (2,8,5)(3,6,9)(10,13,16)(12,18,15)(19,25,22)(20,23,26), (1,23,15,7,20,12,4,26,18)(2,21,16,8,27,13,5,24,10)(3,22,14,9,19,11,6,25,17), (2,3)(4,7)(5,9)(6,8)(10,22)(11,27)(12,20)(13,19)(14,24)(15,26)(16,25)(17,21)(18,23)>;
G:=Group( (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27), (2,8,5)(3,6,9)(10,13,16)(12,18,15)(19,25,22)(20,23,26), (1,23,15,7,20,12,4,26,18)(2,21,16,8,27,13,5,24,10)(3,22,14,9,19,11,6,25,17), (2,3)(4,7)(5,9)(6,8)(10,22)(11,27)(12,20)(13,19)(14,24)(15,26)(16,25)(17,21)(18,23) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27)], [(2,8,5),(3,6,9),(10,13,16),(12,18,15),(19,25,22),(20,23,26)], [(1,23,15,7,20,12,4,26,18),(2,21,16,8,27,13,5,24,10),(3,22,14,9,19,11,6,25,17)], [(2,3),(4,7),(5,9),(6,8),(10,22),(11,27),(12,20),(13,19),(14,24),(15,26),(16,25),(17,21),(18,23)]])
G:=TransitiveGroup(27,43);
3- 1+2.S3 is a maximal subgroup of
C92.S3 C9⋊C9.S3 C9⋊C9.3S3 C3.He3⋊C6 (C32×C9).S3 C3≀C3⋊S3
3- 1+2.S3 is a maximal quotient of 3- 1+2.Dic3 C33.(C3⋊S3) C3.(C33⋊S3) C3.(He3⋊S3) (C3×C9)⋊6D9 3- 1+2⋊D9 (C32×C9).S3
Matrix representation of 3- 1+2.S3 ►in GL6(𝔽19)
0 | 0 | 17 | 12 | 0 | 0 |
0 | 0 | 7 | 5 | 0 | 0 |
0 | 0 | 0 | 0 | 7 | 5 |
0 | 0 | 0 | 0 | 14 | 2 |
17 | 12 | 0 | 0 | 0 | 0 |
7 | 5 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 18 | 18 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 18 | 18 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 18 | 18 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
18 | 18 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
G:=sub<GL(6,GF(19))| [0,0,0,0,17,7,0,0,0,0,12,5,17,7,0,0,0,0,12,5,0,0,0,0,0,0,7,14,0,0,0,0,5,2,0,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,18,1,0,0,0,0,18,0,0,0,0,0,0,0,0,18,0,0,0,0,1,18],[0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,18,0,0,0,0,1,18,0,0,0,0],[1,18,0,0,0,0,0,18,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0] >;
3- 1+2.S3 in GAP, Magma, Sage, TeX
3_-^{1+2}.S_3
% in TeX
G:=Group("ES-(3,1).S3");
// GroupNames label
G:=SmallGroup(162,22);
// by ID
G=gap.SmallGroup(162,22);
# by ID
G:=PCGroup([5,-2,-3,-3,-3,-3,581,546,992,187,282,2523,728,2704]);
// Polycyclic
G:=Group<a,b,c,d|a^9=b^3=d^2=1,c^3=a^6,b*a*b^-1=a^4,c*a*c^-1=a^7*b,d*a*d=a^5*b^-1,c*b*c^-1=a^3*b,b*d=d*b,d*c*d=a^3*c^2>;
// generators/relations
Export
Subgroup lattice of 3- 1+2.S3 in TeX
Character table of 3- 1+2.S3 in TeX