Extensions 1→N→G→Q→1 with N=C4 and Q=C2xF5

Direct product G=NxQ with N=C4 and Q=C2xF5
dρLabelID
C2xC4xF540C2xC4xF5160,203

Semidirect products G=N:Q with N=C4 and Q=C2xF5
extensionφ:Q→Aut NdρLabelID
C4:1(C2xF5) = D4xF5φ: C2xF5/F5C2 ⊆ Aut C4208+C4:1(C2xF5)160,207
C4:2(C2xF5) = C2xC4:F5φ: C2xF5/D10C2 ⊆ Aut C440C4:2(C2xF5)160,204

Non-split extensions G=N.Q with N=C4 and Q=C2xF5
extensionφ:Q→Aut NdρLabelID
C4.1(C2xF5) = D20:C4φ: C2xF5/F5C2 ⊆ Aut C4408+C4.1(C2xF5)160,82
C4.2(C2xF5) = D4:F5φ: C2xF5/F5C2 ⊆ Aut C4408-C4.2(C2xF5)160,83
C4.3(C2xF5) = Q8:F5φ: C2xF5/F5C2 ⊆ Aut C4408-C4.3(C2xF5)160,84
C4.4(C2xF5) = Q8:2F5φ: C2xF5/F5C2 ⊆ Aut C4408+C4.4(C2xF5)160,85
C4.5(C2xF5) = D4.F5φ: C2xF5/F5C2 ⊆ Aut C4808-C4.5(C2xF5)160,206
C4.6(C2xF5) = Q8.F5φ: C2xF5/F5C2 ⊆ Aut C4808+C4.6(C2xF5)160,208
C4.7(C2xF5) = Q8xF5φ: C2xF5/F5C2 ⊆ Aut C4408-C4.7(C2xF5)160,209
C4.8(C2xF5) = C40:C4φ: C2xF5/D10C2 ⊆ Aut C4404C4.8(C2xF5)160,68
C4.9(C2xF5) = D5.D8φ: C2xF5/D10C2 ⊆ Aut C4404C4.9(C2xF5)160,69
C4.10(C2xF5) = C40.C4φ: C2xF5/D10C2 ⊆ Aut C4804C4.10(C2xF5)160,70
C4.11(C2xF5) = D10.Q8φ: C2xF5/D10C2 ⊆ Aut C4804C4.11(C2xF5)160,71
C4.12(C2xF5) = C2xC4.F5φ: C2xF5/D10C2 ⊆ Aut C480C4.12(C2xF5)160,201
C4.13(C2xF5) = D10.C23φ: C2xF5/D10C2 ⊆ Aut C4404C4.13(C2xF5)160,205
C4.14(C2xF5) = D5:C16central extension (φ=1)804C4.14(C2xF5)160,64
C4.15(C2xF5) = C8.F5central extension (φ=1)804C4.15(C2xF5)160,65
C4.16(C2xF5) = C8xF5central extension (φ=1)404C4.16(C2xF5)160,66
C4.17(C2xF5) = C8:F5central extension (φ=1)404C4.17(C2xF5)160,67
C4.18(C2xF5) = C2xC5:C16central extension (φ=1)160C4.18(C2xF5)160,72
C4.19(C2xF5) = C20.C8central extension (φ=1)804C4.19(C2xF5)160,73
C4.20(C2xF5) = C2xD5:C8central extension (φ=1)80C4.20(C2xF5)160,200
C4.21(C2xF5) = D5:M4(2)central extension (φ=1)404C4.21(C2xF5)160,202

׿
x
:
Z
F
o
wr
Q
<