Extensions 1→N→G→Q→1 with N=C4 and Q=C2×F5

Direct product G=N×Q with N=C4 and Q=C2×F5
dρLabelID
C2×C4×F540C2xC4xF5160,203

Semidirect products G=N:Q with N=C4 and Q=C2×F5
extensionφ:Q→Aut NdρLabelID
C41(C2×F5) = D4×F5φ: C2×F5/F5C2 ⊆ Aut C4208+C4:1(C2xF5)160,207
C42(C2×F5) = C2×C4⋊F5φ: C2×F5/D10C2 ⊆ Aut C440C4:2(C2xF5)160,204

Non-split extensions G=N.Q with N=C4 and Q=C2×F5
extensionφ:Q→Aut NdρLabelID
C4.1(C2×F5) = D20⋊C4φ: C2×F5/F5C2 ⊆ Aut C4408+C4.1(C2xF5)160,82
C4.2(C2×F5) = D4⋊F5φ: C2×F5/F5C2 ⊆ Aut C4408-C4.2(C2xF5)160,83
C4.3(C2×F5) = Q8⋊F5φ: C2×F5/F5C2 ⊆ Aut C4408-C4.3(C2xF5)160,84
C4.4(C2×F5) = Q82F5φ: C2×F5/F5C2 ⊆ Aut C4408+C4.4(C2xF5)160,85
C4.5(C2×F5) = D4.F5φ: C2×F5/F5C2 ⊆ Aut C4808-C4.5(C2xF5)160,206
C4.6(C2×F5) = Q8.F5φ: C2×F5/F5C2 ⊆ Aut C4808+C4.6(C2xF5)160,208
C4.7(C2×F5) = Q8×F5φ: C2×F5/F5C2 ⊆ Aut C4408-C4.7(C2xF5)160,209
C4.8(C2×F5) = C40⋊C4φ: C2×F5/D10C2 ⊆ Aut C4404C4.8(C2xF5)160,68
C4.9(C2×F5) = D5.D8φ: C2×F5/D10C2 ⊆ Aut C4404C4.9(C2xF5)160,69
C4.10(C2×F5) = C40.C4φ: C2×F5/D10C2 ⊆ Aut C4804C4.10(C2xF5)160,70
C4.11(C2×F5) = D10.Q8φ: C2×F5/D10C2 ⊆ Aut C4804C4.11(C2xF5)160,71
C4.12(C2×F5) = C2×C4.F5φ: C2×F5/D10C2 ⊆ Aut C480C4.12(C2xF5)160,201
C4.13(C2×F5) = D10.C23φ: C2×F5/D10C2 ⊆ Aut C4404C4.13(C2xF5)160,205
C4.14(C2×F5) = D5⋊C16central extension (φ=1)804C4.14(C2xF5)160,64
C4.15(C2×F5) = C8.F5central extension (φ=1)804C4.15(C2xF5)160,65
C4.16(C2×F5) = C8×F5central extension (φ=1)404C4.16(C2xF5)160,66
C4.17(C2×F5) = C8⋊F5central extension (φ=1)404C4.17(C2xF5)160,67
C4.18(C2×F5) = C2×C5⋊C16central extension (φ=1)160C4.18(C2xF5)160,72
C4.19(C2×F5) = C20.C8central extension (φ=1)804C4.19(C2xF5)160,73
C4.20(C2×F5) = C2×D5⋊C8central extension (φ=1)80C4.20(C2xF5)160,200
C4.21(C2×F5) = D5⋊M4(2)central extension (φ=1)404C4.21(C2xF5)160,202

׿
×
𝔽