Extensions 1→N→G→Q→1 with N=D4×D5 and Q=C2

Direct product G=N×Q with N=D4×D5 and Q=C2

Semidirect products G=N:Q with N=D4×D5 and Q=C2
extensionφ:Q→Out NdρLabelID
(D4×D5)⋊1C2 = D5×D8φ: C2/C1C2 ⊆ Out D4×D5404+(D4xD5):1C2160,131
(D4×D5)⋊2C2 = D8⋊D5φ: C2/C1C2 ⊆ Out D4×D5404(D4xD5):2C2160,132
(D4×D5)⋊3C2 = D40⋊C2φ: C2/C1C2 ⊆ Out D4×D5404+(D4xD5):3C2160,135
(D4×D5)⋊4C2 = D46D10φ: C2/C1C2 ⊆ Out D4×D5404(D4xD5):4C2160,219
(D4×D5)⋊5C2 = D48D10φ: C2/C1C2 ⊆ Out D4×D5404+(D4xD5):5C2160,224
(D4×D5)⋊6C2 = D5×C4○D4φ: trivial image404(D4xD5):6C2160,223

Non-split extensions G=N.Q with N=D4×D5 and Q=C2
extensionφ:Q→Out NdρLabelID
(D4×D5).1C2 = D5×SD16φ: C2/C1C2 ⊆ Out D4×D5404(D4xD5).1C2160,134
(D4×D5).2C2 = D20⋊C4φ: C2/C1C2 ⊆ Out D4×D5408+(D4xD5).2C2160,82
(D4×D5).3C2 = D4×F5φ: C2/C1C2 ⊆ Out D4×D5208+(D4xD5).3C2160,207