direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D5×C4○D4, D4⋊7D10, Q8⋊6D10, D20⋊10C22, C20.25C23, C10.11C24, D10.6C23, Dic10⋊10C22, Dic5.17C23, (D4×D5)⋊6C2, (C2×C4)⋊7D10, (Q8×D5)⋊6C2, C4○D20⋊7C2, D4⋊2D5⋊6C2, (C2×C20)⋊4C22, Q8⋊2D5⋊6C2, (C5×D4)⋊8C22, (C4×D5)⋊7C22, C5⋊D4⋊4C22, (C5×Q8)⋊7C22, (C2×C10).3C23, C4.25(C22×D5), C2.12(C23×D5), C22.2(C22×D5), (C2×Dic5)⋊10C22, (C22×D5).34C22, (C2×C4×D5)⋊6C2, C5⋊4(C2×C4○D4), (C5×C4○D4)⋊3C2, SmallGroup(160,223)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D5×C4○D4
G = < a,b,c,d,e | a5=b2=c4=e2=1, d2=c2, bab=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede=c2d >
Subgroups: 472 in 164 conjugacy classes, 87 normal (16 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C5, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, D5, D5, C10, C10, C22×C4, C2×D4, C2×Q8, C4○D4, C4○D4, Dic5, Dic5, C20, C20, D10, D10, D10, C2×C10, C2×C4○D4, Dic10, C4×D5, C4×D5, D20, C2×Dic5, C5⋊D4, C2×C20, C5×D4, C5×Q8, C22×D5, C2×C4×D5, C4○D20, D4×D5, D4⋊2D5, Q8×D5, Q8⋊2D5, C5×C4○D4, D5×C4○D4
Quotients: C1, C2, C22, C23, D5, C4○D4, C24, D10, C2×C4○D4, C22×D5, C23×D5, D5×C4○D4
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)
(1 8)(2 7)(3 6)(4 10)(5 9)(11 16)(12 20)(13 19)(14 18)(15 17)(21 26)(22 30)(23 29)(24 28)(25 27)(31 36)(32 40)(33 39)(34 38)(35 37)
(1 29 9 24)(2 30 10 25)(3 26 6 21)(4 27 7 22)(5 28 8 23)(11 36 16 31)(12 37 17 32)(13 38 18 33)(14 39 19 34)(15 40 20 35)
(1 19 9 14)(2 20 10 15)(3 16 6 11)(4 17 7 12)(5 18 8 13)(21 36 26 31)(22 37 27 32)(23 38 28 33)(24 39 29 34)(25 40 30 35)
(1 14)(2 15)(3 11)(4 12)(5 13)(6 16)(7 17)(8 18)(9 19)(10 20)(21 31)(22 32)(23 33)(24 34)(25 35)(26 36)(27 37)(28 38)(29 39)(30 40)
G:=sub<Sym(40)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (1,8)(2,7)(3,6)(4,10)(5,9)(11,16)(12,20)(13,19)(14,18)(15,17)(21,26)(22,30)(23,29)(24,28)(25,27)(31,36)(32,40)(33,39)(34,38)(35,37), (1,29,9,24)(2,30,10,25)(3,26,6,21)(4,27,7,22)(5,28,8,23)(11,36,16,31)(12,37,17,32)(13,38,18,33)(14,39,19,34)(15,40,20,35), (1,19,9,14)(2,20,10,15)(3,16,6,11)(4,17,7,12)(5,18,8,13)(21,36,26,31)(22,37,27,32)(23,38,28,33)(24,39,29,34)(25,40,30,35), (1,14)(2,15)(3,11)(4,12)(5,13)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)>;
G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (1,8)(2,7)(3,6)(4,10)(5,9)(11,16)(12,20)(13,19)(14,18)(15,17)(21,26)(22,30)(23,29)(24,28)(25,27)(31,36)(32,40)(33,39)(34,38)(35,37), (1,29,9,24)(2,30,10,25)(3,26,6,21)(4,27,7,22)(5,28,8,23)(11,36,16,31)(12,37,17,32)(13,38,18,33)(14,39,19,34)(15,40,20,35), (1,19,9,14)(2,20,10,15)(3,16,6,11)(4,17,7,12)(5,18,8,13)(21,36,26,31)(22,37,27,32)(23,38,28,33)(24,39,29,34)(25,40,30,35), (1,14)(2,15)(3,11)(4,12)(5,13)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40) );
G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40)], [(1,8),(2,7),(3,6),(4,10),(5,9),(11,16),(12,20),(13,19),(14,18),(15,17),(21,26),(22,30),(23,29),(24,28),(25,27),(31,36),(32,40),(33,39),(34,38),(35,37)], [(1,29,9,24),(2,30,10,25),(3,26,6,21),(4,27,7,22),(5,28,8,23),(11,36,16,31),(12,37,17,32),(13,38,18,33),(14,39,19,34),(15,40,20,35)], [(1,19,9,14),(2,20,10,15),(3,16,6,11),(4,17,7,12),(5,18,8,13),(21,36,26,31),(22,37,27,32),(23,38,28,33),(24,39,29,34),(25,40,30,35)], [(1,14),(2,15),(3,11),(4,12),(5,13),(6,16),(7,17),(8,18),(9,19),(10,20),(21,31),(22,32),(23,33),(24,34),(25,35),(26,36),(27,37),(28,38),(29,39),(30,40)]])
D5×C4○D4 is a maximal subgroup of
C42⋊D10 D5⋊C4≀C2 C4○D4⋊F5 C4○D20⋊C4 D4⋊F5⋊C2 C20.72C24 Q16⋊D10 SD16⋊D10 D40⋊C22 Dic5.21C24 Dic5.22C24 D5.2+ 1+4 C10.C25 D20.37C23 D20.39C23 D20⋊24D6 D30.C23 D20⋊16D6
D5×C4○D4 is a maximal quotient of
C42.88D10 C42.188D10 C42⋊8D10 C42⋊10D10 C42.93D10 C42.94D10 C42.95D10 C42.96D10 C42.97D10 C42.98D10 C4×D4⋊2D5 C42.102D10 D4⋊5Dic10 C42.104D10 C4×D4×D5 C42⋊12D10 C42.228D10 D4⋊5D20 C42⋊16D10 C42.229D10 C42.113D10 C42.114D10 C42.122D10 Q8⋊5Dic10 C4×Q8×D5 C4×Q8⋊2D5 Q8⋊5D20 C42.232D10 C42.131D10 C42.132D10 C20⋊(C4○D4) Dic10⋊20D4 C4⋊C4.178D10 C10.342+ 1+4 C4⋊C4⋊21D10 C10.402+ 1+4 D20⋊20D4 C10.422+ 1+4 C10.432+ 1+4 C10.442+ 1+4 C10.452+ 1+4 (Q8×Dic5)⋊C2 C22⋊Q8⋊25D5 C4⋊C4⋊26D10 D20⋊22D4 Dic10⋊22D4 C10.522+ 1+4 C10.532+ 1+4 C10.202- 1+4 C10.212- 1+4 C10.222- 1+4 C10.232- 1+4 C4⋊C4.197D10 C10.802- 1+4 C10.1212+ 1+4 C10.822- 1+4 C4⋊C4⋊28D10 C10.612+ 1+4 C10.1222+ 1+4 C10.622+ 1+4 C10.632+ 1+4 C10.642+ 1+4 C10.842- 1+4 C10.662+ 1+4 C10.672+ 1+4 C42.233D10 C42.137D10 C42.138D10 C42.139D10 D20⋊10D4 Dic10⋊10D4 C42⋊20D10 C42⋊21D10 C42.234D10 C42.143D10 Dic10⋊7Q8 C42.236D10 D20⋊7Q8 C42.237D10 C42.150D10 C42.151D10 C42.152D10 C42.153D10 C42.154D10 C42.159D10 C42.160D10 C42⋊23D10 C42⋊24D10 C42.189D10 C42.161D10 C42.162D10 C42.163D10 C42.164D10 C10.1042- 1+4 (C2×C20)⋊15D4 C10.1452+ 1+4 C10.1072- 1+4 (C2×C20)⋊17D4 C10.1482+ 1+4 D20⋊24D6 D30.C23 D20⋊16D6
40 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 5A | 5B | 10A | 10B | 10C | ··· | 10H | 20A | 20B | 20C | 20D | 20E | ··· | 20J |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 10 | 10 | 10 | ··· | 10 | 20 | 20 | 20 | 20 | 20 | ··· | 20 |
size | 1 | 1 | 2 | 2 | 2 | 5 | 5 | 10 | 10 | 10 | 1 | 1 | 2 | 2 | 2 | 5 | 5 | 10 | 10 | 10 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 2 | 2 | 2 | 2 | 4 | ··· | 4 |
40 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D5 | C4○D4 | D10 | D10 | D10 | D5×C4○D4 |
kernel | D5×C4○D4 | C2×C4×D5 | C4○D20 | D4×D5 | D4⋊2D5 | Q8×D5 | Q8⋊2D5 | C5×C4○D4 | C4○D4 | D5 | C2×C4 | D4 | Q8 | C1 |
# reps | 1 | 3 | 3 | 3 | 3 | 1 | 1 | 1 | 2 | 4 | 6 | 6 | 2 | 4 |
Matrix representation of D5×C4○D4 ►in GL4(𝔽41) generated by
0 | 1 | 0 | 0 |
40 | 34 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 40 | 0 |
0 | 0 | 0 | 40 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 32 | 0 |
0 | 0 | 0 | 32 |
40 | 0 | 0 | 0 |
0 | 40 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 40 | 0 |
40 | 0 | 0 | 0 |
0 | 40 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 |
G:=sub<GL(4,GF(41))| [0,40,0,0,1,34,0,0,0,0,1,0,0,0,0,1],[0,1,0,0,1,0,0,0,0,0,40,0,0,0,0,40],[1,0,0,0,0,1,0,0,0,0,32,0,0,0,0,32],[40,0,0,0,0,40,0,0,0,0,0,40,0,0,1,0],[40,0,0,0,0,40,0,0,0,0,0,1,0,0,1,0] >;
D5×C4○D4 in GAP, Magma, Sage, TeX
D_5\times C_4\circ D_4
% in TeX
G:=Group("D5xC4oD4");
// GroupNames label
G:=SmallGroup(160,223);
// by ID
G=gap.SmallGroup(160,223);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-5,86,297,4613]);
// Polycyclic
G:=Group<a,b,c,d,e|a^5=b^2=c^4=e^2=1,d^2=c^2,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=c^2*d>;
// generators/relations