metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D4⋊8D10, Q8⋊7D10, C5⋊22+ 1+4, D20⋊11C22, C20.26C23, C10.12C24, D10.7C23, Dic5.7C23, Dic10⋊12C22, C4○D4⋊3D5, (D4×D5)⋊5C2, (C2×C4)⋊4D10, C4○D20⋊8C2, (C2×D20)⋊13C2, (C2×C20)⋊5C22, Q8⋊2D5⋊5C2, (C5×D4)⋊9C22, (C4×D5)⋊2C22, C5⋊D4⋊5C22, (C5×Q8)⋊8C22, (C2×C10).4C23, C2.13(C23×D5), C4.33(C22×D5), (C22×D5)⋊4C22, C22.3(C22×D5), (C5×C4○D4)⋊4C2, SmallGroup(160,224)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D4⋊8D10
G = < a,b,c,d | a4=b2=c10=d2=1, bab=dad=a-1, ac=ca, cbc-1=a2b, bd=db, dcd=c-1 >
Subgroups: 568 in 166 conjugacy classes, 85 normal (12 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C5, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, D5, C10, C10, C2×D4, C4○D4, C4○D4, Dic5, C20, C20, D10, D10, C2×C10, 2+ 1+4, Dic10, C4×D5, D20, C5⋊D4, C2×C20, C5×D4, C5×Q8, C22×D5, C2×D20, C4○D20, D4×D5, Q8⋊2D5, C5×C4○D4, D4⋊8D10
Quotients: C1, C2, C22, C23, D5, C24, D10, 2+ 1+4, C22×D5, C23×D5, D4⋊8D10
(1 21 33 19)(2 22 34 20)(3 23 35 11)(4 24 36 12)(5 25 37 13)(6 26 38 14)(7 27 39 15)(8 28 40 16)(9 29 31 17)(10 30 32 18)
(1 19)(2 22)(3 11)(4 24)(5 13)(6 26)(7 15)(8 28)(9 17)(10 30)(12 36)(14 38)(16 40)(18 32)(20 34)(21 33)(23 35)(25 37)(27 39)(29 31)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)
(1 13)(2 12)(3 11)(4 20)(5 19)(6 18)(7 17)(8 16)(9 15)(10 14)(21 37)(22 36)(23 35)(24 34)(25 33)(26 32)(27 31)(28 40)(29 39)(30 38)
G:=sub<Sym(40)| (1,21,33,19)(2,22,34,20)(3,23,35,11)(4,24,36,12)(5,25,37,13)(6,26,38,14)(7,27,39,15)(8,28,40,16)(9,29,31,17)(10,30,32,18), (1,19)(2,22)(3,11)(4,24)(5,13)(6,26)(7,15)(8,28)(9,17)(10,30)(12,36)(14,38)(16,40)(18,32)(20,34)(21,33)(23,35)(25,37)(27,39)(29,31), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40), (1,13)(2,12)(3,11)(4,20)(5,19)(6,18)(7,17)(8,16)(9,15)(10,14)(21,37)(22,36)(23,35)(24,34)(25,33)(26,32)(27,31)(28,40)(29,39)(30,38)>;
G:=Group( (1,21,33,19)(2,22,34,20)(3,23,35,11)(4,24,36,12)(5,25,37,13)(6,26,38,14)(7,27,39,15)(8,28,40,16)(9,29,31,17)(10,30,32,18), (1,19)(2,22)(3,11)(4,24)(5,13)(6,26)(7,15)(8,28)(9,17)(10,30)(12,36)(14,38)(16,40)(18,32)(20,34)(21,33)(23,35)(25,37)(27,39)(29,31), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40), (1,13)(2,12)(3,11)(4,20)(5,19)(6,18)(7,17)(8,16)(9,15)(10,14)(21,37)(22,36)(23,35)(24,34)(25,33)(26,32)(27,31)(28,40)(29,39)(30,38) );
G=PermutationGroup([[(1,21,33,19),(2,22,34,20),(3,23,35,11),(4,24,36,12),(5,25,37,13),(6,26,38,14),(7,27,39,15),(8,28,40,16),(9,29,31,17),(10,30,32,18)], [(1,19),(2,22),(3,11),(4,24),(5,13),(6,26),(7,15),(8,28),(9,17),(10,30),(12,36),(14,38),(16,40),(18,32),(20,34),(21,33),(23,35),(25,37),(27,39),(29,31)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40)], [(1,13),(2,12),(3,11),(4,20),(5,19),(6,18),(7,17),(8,16),(9,15),(10,14),(21,37),(22,36),(23,35),(24,34),(25,33),(26,32),(27,31),(28,40),(29,39),(30,38)]])
D4⋊8D10 is a maximal subgroup of
D4⋊4D20 M4(2)⋊D10 D20⋊18D4 D20.39D4 D4.11D20 D4.12D20 D8⋊15D10 D8⋊11D10 D8⋊5D10 C40.C23 D20.32C23 D20.34C23 C10.C25 D5×2+ 1+4 D20.39C23 Dic10.A4 D20⋊25D6 D20⋊29D6 D20⋊14D6 D20⋊17D6 D4⋊8D30
D4⋊8D10 is a maximal quotient of
C42.90D10 C42⋊7D10 C42.91D10 C42⋊9D10 C42⋊10D10 C42.95D10 C42.97D10 C42.99D10 C42.100D10 D4⋊6Dic10 C42⋊11D10 D4×D20 D20⋊23D4 Dic10⋊24D4 C42⋊17D10 C42.116D10 C42.117D10 C42.119D10 Q8×Dic10 C42.126D10 Q8⋊6D20 D20⋊10Q8 C42.133D10 C42.136D10 C10.372+ 1+4 C10.382+ 1+4 D20⋊19D4 C10.462+ 1+4 C10.1152+ 1+4 C10.472+ 1+4 C10.482+ 1+4 C10.172- 1+4 D20⋊21D4 C10.512+ 1+4 C10.1182+ 1+4 C10.242- 1+4 C10.562+ 1+4 C10.262- 1+4 C10.1202+ 1+4 C10.1212+ 1+4 C10.612+ 1+4 C10.1222+ 1+4 C10.662+ 1+4 C10.852- 1+4 C10.682+ 1+4 C10.692+ 1+4 C42⋊18D10 D20⋊10D4 C42⋊20D10 C42.143D10 C42.144D10 C42⋊22D10 C42.145D10 C42.148D10 D20⋊7Q8 C42.150D10 C42.153D10 C42.156D10 C42.157D10 C42.158D10 C42⋊23D10 C42⋊24D10 C42.161D10 C42.163D10 C42.164D10 C42⋊25D10 C42.165D10 C10.1062- 1+4 C10.1452+ 1+4 C10.1462+ 1+4 C10.1472+ 1+4 C10.1482+ 1+4 D20⋊25D6 D20⋊29D6 D20⋊14D6 D20⋊17D6 D4⋊8D30
37 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | ··· | 2J | 4A | 4B | 4C | 4D | 4E | 4F | 5A | 5B | 10A | 10B | 10C | ··· | 10H | 20A | 20B | 20C | 20D | 20E | ··· | 20J |
order | 1 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 10 | 10 | 10 | ··· | 10 | 20 | 20 | 20 | 20 | 20 | ··· | 20 |
size | 1 | 1 | 2 | 2 | 2 | 10 | ··· | 10 | 2 | 2 | 2 | 2 | 10 | 10 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 2 | 2 | 2 | 2 | 4 | ··· | 4 |
37 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + |
image | C1 | C2 | C2 | C2 | C2 | C2 | D5 | D10 | D10 | D10 | 2+ 1+4 | D4⋊8D10 |
kernel | D4⋊8D10 | C2×D20 | C4○D20 | D4×D5 | Q8⋊2D5 | C5×C4○D4 | C4○D4 | C2×C4 | D4 | Q8 | C5 | C1 |
# reps | 1 | 3 | 3 | 6 | 2 | 1 | 2 | 6 | 6 | 2 | 1 | 4 |
Matrix representation of D4⋊8D10 ►in GL6(𝔽41)
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 13 | 0 | 0 | 5 |
0 | 0 | 7 | 0 | 40 | 28 |
0 | 0 | 0 | 1 | 0 | 40 |
0 | 0 | 7 | 0 | 0 | 28 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 13 | 0 | 0 | 5 |
0 | 0 | 7 | 0 | 40 | 28 |
0 | 0 | 3 | 40 | 0 | 40 |
0 | 0 | 32 | 0 | 0 | 28 |
7 | 7 | 0 | 0 | 0 | 0 |
34 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 5 | 0 |
0 | 0 | 0 | 0 | 28 | 1 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 1 | 28 | 0 |
7 | 7 | 0 | 0 | 0 | 0 |
40 | 34 | 0 | 0 | 0 | 0 |
0 | 0 | 13 | 0 | 0 | 5 |
0 | 0 | 32 | 0 | 1 | 28 |
0 | 0 | 0 | 1 | 0 | 40 |
0 | 0 | 32 | 0 | 0 | 28 |
G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,13,7,0,7,0,0,0,0,1,0,0,0,0,40,0,0,0,0,5,28,40,28],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,13,7,3,32,0,0,0,0,40,0,0,0,0,40,0,0,0,0,5,28,40,28],[7,34,0,0,0,0,7,40,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,5,28,40,28,0,0,0,1,0,0],[7,40,0,0,0,0,7,34,0,0,0,0,0,0,13,32,0,32,0,0,0,0,1,0,0,0,0,1,0,0,0,0,5,28,40,28] >;
D4⋊8D10 in GAP, Magma, Sage, TeX
D_4\rtimes_8D_{10}
% in TeX
G:=Group("D4:8D10");
// GroupNames label
G:=SmallGroup(160,224);
// by ID
G=gap.SmallGroup(160,224);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-5,188,579,69,4613]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^2=c^10=d^2=1,b*a*b=d*a*d=a^-1,a*c=c*a,c*b*c^-1=a^2*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations