Extensions 1→N→G→Q→1 with N=C10 and Q=C4⋊C4

Direct product G=N×Q with N=C10 and Q=C4⋊C4
dρLabelID
C10×C4⋊C4160C10xC4:C4160,177

Semidirect products G=N:Q with N=C10 and Q=C4⋊C4
extensionφ:Q→Aut NdρLabelID
C10⋊(C4⋊C4) = C2×C4⋊F5φ: C4⋊C4/C4C4 ⊆ Aut C1040C10:(C4:C4)160,204
C102(C4⋊C4) = C2×C10.D4φ: C4⋊C4/C2×C4C2 ⊆ Aut C10160C10:2(C4:C4)160,144
C103(C4⋊C4) = C2×C4⋊Dic5φ: C4⋊C4/C2×C4C2 ⊆ Aut C10160C10:3(C4:C4)160,146

Non-split extensions G=N.Q with N=C10 and Q=C4⋊C4
extensionφ:Q→Aut NdρLabelID
C10.1(C4⋊C4) = C40⋊C4φ: C4⋊C4/C4C4 ⊆ Aut C10404C10.1(C4:C4)160,68
C10.2(C4⋊C4) = D5.D8φ: C4⋊C4/C4C4 ⊆ Aut C10404C10.2(C4:C4)160,69
C10.3(C4⋊C4) = C40.C4φ: C4⋊C4/C4C4 ⊆ Aut C10804C10.3(C4:C4)160,70
C10.4(C4⋊C4) = D10.Q8φ: C4⋊C4/C4C4 ⊆ Aut C10804C10.4(C4:C4)160,71
C10.5(C4⋊C4) = C20⋊C8φ: C4⋊C4/C4C4 ⊆ Aut C10160C10.5(C4:C4)160,76
C10.6(C4⋊C4) = Dic5⋊C8φ: C4⋊C4/C4C4 ⊆ Aut C10160C10.6(C4:C4)160,79
C10.7(C4⋊C4) = D10.3Q8φ: C4⋊C4/C4C4 ⊆ Aut C1040C10.7(C4:C4)160,81
C10.8(C4⋊C4) = C203C8φ: C4⋊C4/C2×C4C2 ⊆ Aut C10160C10.8(C4:C4)160,11
C10.9(C4⋊C4) = C10.D8φ: C4⋊C4/C2×C4C2 ⊆ Aut C10160C10.9(C4:C4)160,14
C10.10(C4⋊C4) = C20.Q8φ: C4⋊C4/C2×C4C2 ⊆ Aut C10160C10.10(C4:C4)160,15
C10.11(C4⋊C4) = C20.8Q8φ: C4⋊C4/C2×C4C2 ⊆ Aut C10160C10.11(C4:C4)160,21
C10.12(C4⋊C4) = C406C4φ: C4⋊C4/C2×C4C2 ⊆ Aut C10160C10.12(C4:C4)160,24
C10.13(C4⋊C4) = C405C4φ: C4⋊C4/C2×C4C2 ⊆ Aut C10160C10.13(C4:C4)160,25
C10.14(C4⋊C4) = C40.6C4φ: C4⋊C4/C2×C4C2 ⊆ Aut C10802C10.14(C4:C4)160,26
C10.15(C4⋊C4) = C20.53D4φ: C4⋊C4/C2×C4C2 ⊆ Aut C10804C10.15(C4:C4)160,29
C10.16(C4⋊C4) = C10.10C42φ: C4⋊C4/C2×C4C2 ⊆ Aut C10160C10.16(C4:C4)160,38
C10.17(C4⋊C4) = C5×C2.C42central extension (φ=1)160C10.17(C4:C4)160,45
C10.18(C4⋊C4) = C5×C4⋊C8central extension (φ=1)160C10.18(C4:C4)160,55
C10.19(C4⋊C4) = C5×C4.Q8central extension (φ=1)160C10.19(C4:C4)160,56
C10.20(C4⋊C4) = C5×C2.D8central extension (φ=1)160C10.20(C4:C4)160,57
C10.21(C4⋊C4) = C5×C8.C4central extension (φ=1)802C10.21(C4:C4)160,58

׿
×
𝔽