metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C20.53D4, M4(2).1D5, C22.1Dic10, (C2×C10).Q8, C5⋊2C8.1C4, C4.13(C4×D5), C5⋊4(C8.C4), C20.26(C2×C4), (C2×C4).37D10, C10.15(C4⋊C4), C4.28(C5⋊D4), C4.Dic5.2C2, (C2×C20).12C22, (C5×M4(2)).1C2, C2.5(C10.D4), (C2×C5⋊2C8).4C2, SmallGroup(160,29)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C20.53D4
G = < a,b,c | a20=1, b4=a10, c2=a5, bab-1=cac-1=a9, cbc-1=a10b3 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(1 52 16 47 11 42 6 57)(2 41 17 56 12 51 7 46)(3 50 18 45 13 60 8 55)(4 59 19 54 14 49 9 44)(5 48 20 43 15 58 10 53)(21 79 26 64 31 69 36 74)(22 68 27 73 32 78 37 63)(23 77 28 62 33 67 38 72)(24 66 29 71 34 76 39 61)(25 75 30 80 35 65 40 70)
(1 69 6 74 11 79 16 64)(2 78 7 63 12 68 17 73)(3 67 8 72 13 77 18 62)(4 76 9 61 14 66 19 71)(5 65 10 70 15 75 20 80)(21 47 26 52 31 57 36 42)(22 56 27 41 32 46 37 51)(23 45 28 50 33 55 38 60)(24 54 29 59 34 44 39 49)(25 43 30 48 35 53 40 58)
G:=sub<Sym(80)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,52,16,47,11,42,6,57)(2,41,17,56,12,51,7,46)(3,50,18,45,13,60,8,55)(4,59,19,54,14,49,9,44)(5,48,20,43,15,58,10,53)(21,79,26,64,31,69,36,74)(22,68,27,73,32,78,37,63)(23,77,28,62,33,67,38,72)(24,66,29,71,34,76,39,61)(25,75,30,80,35,65,40,70), (1,69,6,74,11,79,16,64)(2,78,7,63,12,68,17,73)(3,67,8,72,13,77,18,62)(4,76,9,61,14,66,19,71)(5,65,10,70,15,75,20,80)(21,47,26,52,31,57,36,42)(22,56,27,41,32,46,37,51)(23,45,28,50,33,55,38,60)(24,54,29,59,34,44,39,49)(25,43,30,48,35,53,40,58)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,52,16,47,11,42,6,57)(2,41,17,56,12,51,7,46)(3,50,18,45,13,60,8,55)(4,59,19,54,14,49,9,44)(5,48,20,43,15,58,10,53)(21,79,26,64,31,69,36,74)(22,68,27,73,32,78,37,63)(23,77,28,62,33,67,38,72)(24,66,29,71,34,76,39,61)(25,75,30,80,35,65,40,70), (1,69,6,74,11,79,16,64)(2,78,7,63,12,68,17,73)(3,67,8,72,13,77,18,62)(4,76,9,61,14,66,19,71)(5,65,10,70,15,75,20,80)(21,47,26,52,31,57,36,42)(22,56,27,41,32,46,37,51)(23,45,28,50,33,55,38,60)(24,54,29,59,34,44,39,49)(25,43,30,48,35,53,40,58) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(1,52,16,47,11,42,6,57),(2,41,17,56,12,51,7,46),(3,50,18,45,13,60,8,55),(4,59,19,54,14,49,9,44),(5,48,20,43,15,58,10,53),(21,79,26,64,31,69,36,74),(22,68,27,73,32,78,37,63),(23,77,28,62,33,67,38,72),(24,66,29,71,34,76,39,61),(25,75,30,80,35,65,40,70)], [(1,69,6,74,11,79,16,64),(2,78,7,63,12,68,17,73),(3,67,8,72,13,77,18,62),(4,76,9,61,14,66,19,71),(5,65,10,70,15,75,20,80),(21,47,26,52,31,57,36,42),(22,56,27,41,32,46,37,51),(23,45,28,50,33,55,38,60),(24,54,29,59,34,44,39,49),(25,43,30,48,35,53,40,58)]])
C20.53D4 is a maximal subgroup of
D20.2D4 D20.3D4 D20.6D4 D20.7D4 M4(2).22D10 C42.196D10 D5×C8.C4 M4(2).25D10 C23.Dic10 C40.93D4 C40.50D4 M4(2).D10 M4(2).13D10 M4(2).15D10 M4(2).16D10 C60.105D4 C60.D4 C60.210D4
C20.53D4 is a maximal quotient of
C20.53D8 C20.39SD16 C20.34C42 C60.105D4 C60.D4 C60.210D4
34 conjugacy classes
class | 1 | 2A | 2B | 4A | 4B | 4C | 5A | 5B | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 10A | 10B | 10C | 10D | 20A | 20B | 20C | 20D | 20E | 20F | 40A | ··· | 40H |
order | 1 | 2 | 2 | 4 | 4 | 4 | 5 | 5 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 10 | 10 | 10 | 10 | 20 | 20 | 20 | 20 | 20 | 20 | 40 | ··· | 40 |
size | 1 | 1 | 2 | 1 | 1 | 2 | 2 | 2 | 4 | 4 | 10 | 10 | 10 | 10 | 20 | 20 | 2 | 2 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | ··· | 4 |
34 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | - | + | + | - | |||||
image | C1 | C2 | C2 | C2 | C4 | D4 | Q8 | D5 | D10 | C8.C4 | C4×D5 | C5⋊D4 | Dic10 | C20.53D4 |
kernel | C20.53D4 | C2×C5⋊2C8 | C4.Dic5 | C5×M4(2) | C5⋊2C8 | C20 | C2×C10 | M4(2) | C2×C4 | C5 | C4 | C4 | C22 | C1 |
# reps | 1 | 1 | 1 | 1 | 4 | 1 | 1 | 2 | 2 | 4 | 4 | 4 | 4 | 4 |
Matrix representation of C20.53D4 ►in GL4(𝔽41) generated by
34 | 1 | 0 | 0 |
33 | 1 | 0 | 0 |
0 | 0 | 9 | 0 |
0 | 0 | 0 | 9 |
12 | 27 | 0 | 0 |
25 | 29 | 0 | 0 |
0 | 0 | 27 | 0 |
0 | 0 | 31 | 38 |
12 | 2 | 0 | 0 |
30 | 29 | 0 | 0 |
0 | 0 | 4 | 12 |
0 | 0 | 37 | 37 |
G:=sub<GL(4,GF(41))| [34,33,0,0,1,1,0,0,0,0,9,0,0,0,0,9],[12,25,0,0,27,29,0,0,0,0,27,31,0,0,0,38],[12,30,0,0,2,29,0,0,0,0,4,37,0,0,12,37] >;
C20.53D4 in GAP, Magma, Sage, TeX
C_{20}._{53}D_4
% in TeX
G:=Group("C20.53D4");
// GroupNames label
G:=SmallGroup(160,29);
// by ID
G=gap.SmallGroup(160,29);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-5,48,121,31,86,297,69,4613]);
// Polycyclic
G:=Group<a,b,c|a^20=1,b^4=a^10,c^2=a^5,b*a*b^-1=c*a*c^-1=a^9,c*b*c^-1=a^10*b^3>;
// generators/relations
Export