Copied to
clipboard

G = C40.6C4order 160 = 25·5

1st non-split extension by C40 of C4 acting via C4/C2=C2

metacyclic, supersoluble, monomial, 2-hyperelementary

Aliases: C40.6C4, C4.18D20, C20.34D4, C8.1Dic5, C22.2Dic10, (C2×C8).5D5, (C2×C40).7C2, (C2×C10).3Q8, C53(C8.C4), C20.56(C2×C4), (C2×C4).70D10, C10.14(C4⋊C4), C4.8(C2×Dic5), C2.5(C4⋊Dic5), C4.Dic5.1C2, (C2×C20).97C22, SmallGroup(160,26)

Series: Derived Chief Lower central Upper central

C1C20 — C40.6C4
C1C5C10C20C2×C20C4.Dic5 — C40.6C4
C5C10C20 — C40.6C4
C1C4C2×C4C2×C8

Generators and relations for C40.6C4
 G = < a,b | a40=1, b4=a20, bab-1=a19 >

2C2
2C10
10C8
10C8
5M4(2)
5M4(2)
2C52C8
2C52C8
5C8.C4

Smallest permutation representation of C40.6C4
On 80 points
Generators in S80
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(1 45 31 55 21 65 11 75)(2 64 32 74 22 44 12 54)(3 43 33 53 23 63 13 73)(4 62 34 72 24 42 14 52)(5 41 35 51 25 61 15 71)(6 60 36 70 26 80 16 50)(7 79 37 49 27 59 17 69)(8 58 38 68 28 78 18 48)(9 77 39 47 29 57 19 67)(10 56 40 66 30 76 20 46)

G:=sub<Sym(80)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,45,31,55,21,65,11,75)(2,64,32,74,22,44,12,54)(3,43,33,53,23,63,13,73)(4,62,34,72,24,42,14,52)(5,41,35,51,25,61,15,71)(6,60,36,70,26,80,16,50)(7,79,37,49,27,59,17,69)(8,58,38,68,28,78,18,48)(9,77,39,47,29,57,19,67)(10,56,40,66,30,76,20,46)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,45,31,55,21,65,11,75)(2,64,32,74,22,44,12,54)(3,43,33,53,23,63,13,73)(4,62,34,72,24,42,14,52)(5,41,35,51,25,61,15,71)(6,60,36,70,26,80,16,50)(7,79,37,49,27,59,17,69)(8,58,38,68,28,78,18,48)(9,77,39,47,29,57,19,67)(10,56,40,66,30,76,20,46) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(1,45,31,55,21,65,11,75),(2,64,32,74,22,44,12,54),(3,43,33,53,23,63,13,73),(4,62,34,72,24,42,14,52),(5,41,35,51,25,61,15,71),(6,60,36,70,26,80,16,50),(7,79,37,49,27,59,17,69),(8,58,38,68,28,78,18,48),(9,77,39,47,29,57,19,67),(10,56,40,66,30,76,20,46)]])

C40.6C4 is a maximal subgroup of
C8.Dic10  C40.7Q8  C80.6C4  D40.3C4  C40.Q8  D40.4C4  C20.4D8  D8.Dic5  Q16.Dic5  C20.58D8  D4017C4  D4010C4  D5×C8.C4  M4(2).25D10  M4(2).Dic5  D4.3D20  D4.4D20  D4.5D20  C40.23D4  C40.44D4  C40.29D4  D85Dic5  D84Dic5  C12.59D20  C4.18D60
C40.6C4 is a maximal quotient of
C406C8  C405C8  C20.40C42  C12.59D20  C4.18D60

46 conjugacy classes

class 1 2A2B4A4B4C5A5B8A8B8C8D8E8F8G8H10A···10F20A···20H40A···40P
order122444558888888810···1020···2040···40
size112112222222202020202···22···22···2

46 irreducible representations

dim1111222222222
type++++-+-++-
imageC1C2C2C4D4Q8D5Dic5D10C8.C4D20Dic10C40.6C4
kernelC40.6C4C4.Dic5C2×C40C40C20C2×C10C2×C8C8C2×C4C5C4C22C1
# reps12141124244416

Matrix representation of C40.6C4 in GL2(𝔽41) generated by

300
015
,
032
10
G:=sub<GL(2,GF(41))| [30,0,0,15],[0,1,32,0] >;

C40.6C4 in GAP, Magma, Sage, TeX

C_{40}._6C_4
% in TeX

G:=Group("C40.6C4");
// GroupNames label

G:=SmallGroup(160,26);
// by ID

G=gap.SmallGroup(160,26);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-5,24,121,55,86,579,69,4613]);
// Polycyclic

G:=Group<a,b|a^40=1,b^4=a^20,b*a*b^-1=a^19>;
// generators/relations

Export

Subgroup lattice of C40.6C4 in TeX

׿
×
𝔽