Copied to
clipboard

G = C11⋊Q16order 176 = 24·11

The semidirect product of C11 and Q16 acting via Q16/Q8=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C112Q16, Q8.D11, C4.4D22, C22.10D4, C44.4C22, Dic22.2C2, C11⋊C8.C2, (Q8×C11).1C2, C2.7(C11⋊D4), SmallGroup(176,17)

Series: Derived Chief Lower central Upper central

C1C44 — C11⋊Q16
C1C11C22C44Dic22 — C11⋊Q16
C11C22C44 — C11⋊Q16
C1C2C4Q8

Generators and relations for C11⋊Q16
 G = < a,b,c | a11=b8=1, c2=b4, bab-1=a-1, ac=ca, cbc-1=b-1 >

2C4
22C4
11C8
11Q8
2Dic11
2C44
11Q16

Smallest permutation representation of C11⋊Q16
Regular action on 176 points
Generators in S176
(1 2 3 4 5 6 7 8 9 10 11)(12 13 14 15 16 17 18 19 20 21 22)(23 24 25 26 27 28 29 30 31 32 33)(34 35 36 37 38 39 40 41 42 43 44)(45 46 47 48 49 50 51 52 53 54 55)(56 57 58 59 60 61 62 63 64 65 66)(67 68 69 70 71 72 73 74 75 76 77)(78 79 80 81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96 97 98 99)(100 101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120 121)(122 123 124 125 126 127 128 129 130 131 132)(133 134 135 136 137 138 139 140 141 142 143)(144 145 146 147 148 149 150 151 152 153 154)(155 156 157 158 159 160 161 162 163 164 165)(166 167 168 169 170 171 172 173 174 175 176)
(1 155 32 144 21 166 43 133)(2 165 33 154 22 176 44 143)(3 164 23 153 12 175 34 142)(4 163 24 152 13 174 35 141)(5 162 25 151 14 173 36 140)(6 161 26 150 15 172 37 139)(7 160 27 149 16 171 38 138)(8 159 28 148 17 170 39 137)(9 158 29 147 18 169 40 136)(10 157 30 146 19 168 41 135)(11 156 31 145 20 167 42 134)(45 120 78 98 56 131 67 109)(46 119 79 97 57 130 68 108)(47 118 80 96 58 129 69 107)(48 117 81 95 59 128 70 106)(49 116 82 94 60 127 71 105)(50 115 83 93 61 126 72 104)(51 114 84 92 62 125 73 103)(52 113 85 91 63 124 74 102)(53 112 86 90 64 123 75 101)(54 111 87 89 65 122 76 100)(55 121 88 99 66 132 77 110)
(1 65 21 54)(2 66 22 55)(3 56 12 45)(4 57 13 46)(5 58 14 47)(6 59 15 48)(7 60 16 49)(8 61 17 50)(9 62 18 51)(10 63 19 52)(11 64 20 53)(23 78 34 67)(24 79 35 68)(25 80 36 69)(26 81 37 70)(27 82 38 71)(28 83 39 72)(29 84 40 73)(30 85 41 74)(31 86 42 75)(32 87 43 76)(33 88 44 77)(89 166 100 155)(90 167 101 156)(91 168 102 157)(92 169 103 158)(93 170 104 159)(94 171 105 160)(95 172 106 161)(96 173 107 162)(97 174 108 163)(98 175 109 164)(99 176 110 165)(111 133 122 144)(112 134 123 145)(113 135 124 146)(114 136 125 147)(115 137 126 148)(116 138 127 149)(117 139 128 150)(118 140 129 151)(119 141 130 152)(120 142 131 153)(121 143 132 154)

G:=sub<Sym(176)| (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55)(56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77)(78,79,80,81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120,121)(122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143)(144,145,146,147,148,149,150,151,152,153,154)(155,156,157,158,159,160,161,162,163,164,165)(166,167,168,169,170,171,172,173,174,175,176), (1,155,32,144,21,166,43,133)(2,165,33,154,22,176,44,143)(3,164,23,153,12,175,34,142)(4,163,24,152,13,174,35,141)(5,162,25,151,14,173,36,140)(6,161,26,150,15,172,37,139)(7,160,27,149,16,171,38,138)(8,159,28,148,17,170,39,137)(9,158,29,147,18,169,40,136)(10,157,30,146,19,168,41,135)(11,156,31,145,20,167,42,134)(45,120,78,98,56,131,67,109)(46,119,79,97,57,130,68,108)(47,118,80,96,58,129,69,107)(48,117,81,95,59,128,70,106)(49,116,82,94,60,127,71,105)(50,115,83,93,61,126,72,104)(51,114,84,92,62,125,73,103)(52,113,85,91,63,124,74,102)(53,112,86,90,64,123,75,101)(54,111,87,89,65,122,76,100)(55,121,88,99,66,132,77,110), (1,65,21,54)(2,66,22,55)(3,56,12,45)(4,57,13,46)(5,58,14,47)(6,59,15,48)(7,60,16,49)(8,61,17,50)(9,62,18,51)(10,63,19,52)(11,64,20,53)(23,78,34,67)(24,79,35,68)(25,80,36,69)(26,81,37,70)(27,82,38,71)(28,83,39,72)(29,84,40,73)(30,85,41,74)(31,86,42,75)(32,87,43,76)(33,88,44,77)(89,166,100,155)(90,167,101,156)(91,168,102,157)(92,169,103,158)(93,170,104,159)(94,171,105,160)(95,172,106,161)(96,173,107,162)(97,174,108,163)(98,175,109,164)(99,176,110,165)(111,133,122,144)(112,134,123,145)(113,135,124,146)(114,136,125,147)(115,137,126,148)(116,138,127,149)(117,139,128,150)(118,140,129,151)(119,141,130,152)(120,142,131,153)(121,143,132,154)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55)(56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77)(78,79,80,81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120,121)(122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143)(144,145,146,147,148,149,150,151,152,153,154)(155,156,157,158,159,160,161,162,163,164,165)(166,167,168,169,170,171,172,173,174,175,176), (1,155,32,144,21,166,43,133)(2,165,33,154,22,176,44,143)(3,164,23,153,12,175,34,142)(4,163,24,152,13,174,35,141)(5,162,25,151,14,173,36,140)(6,161,26,150,15,172,37,139)(7,160,27,149,16,171,38,138)(8,159,28,148,17,170,39,137)(9,158,29,147,18,169,40,136)(10,157,30,146,19,168,41,135)(11,156,31,145,20,167,42,134)(45,120,78,98,56,131,67,109)(46,119,79,97,57,130,68,108)(47,118,80,96,58,129,69,107)(48,117,81,95,59,128,70,106)(49,116,82,94,60,127,71,105)(50,115,83,93,61,126,72,104)(51,114,84,92,62,125,73,103)(52,113,85,91,63,124,74,102)(53,112,86,90,64,123,75,101)(54,111,87,89,65,122,76,100)(55,121,88,99,66,132,77,110), (1,65,21,54)(2,66,22,55)(3,56,12,45)(4,57,13,46)(5,58,14,47)(6,59,15,48)(7,60,16,49)(8,61,17,50)(9,62,18,51)(10,63,19,52)(11,64,20,53)(23,78,34,67)(24,79,35,68)(25,80,36,69)(26,81,37,70)(27,82,38,71)(28,83,39,72)(29,84,40,73)(30,85,41,74)(31,86,42,75)(32,87,43,76)(33,88,44,77)(89,166,100,155)(90,167,101,156)(91,168,102,157)(92,169,103,158)(93,170,104,159)(94,171,105,160)(95,172,106,161)(96,173,107,162)(97,174,108,163)(98,175,109,164)(99,176,110,165)(111,133,122,144)(112,134,123,145)(113,135,124,146)(114,136,125,147)(115,137,126,148)(116,138,127,149)(117,139,128,150)(118,140,129,151)(119,141,130,152)(120,142,131,153)(121,143,132,154) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11),(12,13,14,15,16,17,18,19,20,21,22),(23,24,25,26,27,28,29,30,31,32,33),(34,35,36,37,38,39,40,41,42,43,44),(45,46,47,48,49,50,51,52,53,54,55),(56,57,58,59,60,61,62,63,64,65,66),(67,68,69,70,71,72,73,74,75,76,77),(78,79,80,81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96,97,98,99),(100,101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120,121),(122,123,124,125,126,127,128,129,130,131,132),(133,134,135,136,137,138,139,140,141,142,143),(144,145,146,147,148,149,150,151,152,153,154),(155,156,157,158,159,160,161,162,163,164,165),(166,167,168,169,170,171,172,173,174,175,176)], [(1,155,32,144,21,166,43,133),(2,165,33,154,22,176,44,143),(3,164,23,153,12,175,34,142),(4,163,24,152,13,174,35,141),(5,162,25,151,14,173,36,140),(6,161,26,150,15,172,37,139),(7,160,27,149,16,171,38,138),(8,159,28,148,17,170,39,137),(9,158,29,147,18,169,40,136),(10,157,30,146,19,168,41,135),(11,156,31,145,20,167,42,134),(45,120,78,98,56,131,67,109),(46,119,79,97,57,130,68,108),(47,118,80,96,58,129,69,107),(48,117,81,95,59,128,70,106),(49,116,82,94,60,127,71,105),(50,115,83,93,61,126,72,104),(51,114,84,92,62,125,73,103),(52,113,85,91,63,124,74,102),(53,112,86,90,64,123,75,101),(54,111,87,89,65,122,76,100),(55,121,88,99,66,132,77,110)], [(1,65,21,54),(2,66,22,55),(3,56,12,45),(4,57,13,46),(5,58,14,47),(6,59,15,48),(7,60,16,49),(8,61,17,50),(9,62,18,51),(10,63,19,52),(11,64,20,53),(23,78,34,67),(24,79,35,68),(25,80,36,69),(26,81,37,70),(27,82,38,71),(28,83,39,72),(29,84,40,73),(30,85,41,74),(31,86,42,75),(32,87,43,76),(33,88,44,77),(89,166,100,155),(90,167,101,156),(91,168,102,157),(92,169,103,158),(93,170,104,159),(94,171,105,160),(95,172,106,161),(96,173,107,162),(97,174,108,163),(98,175,109,164),(99,176,110,165),(111,133,122,144),(112,134,123,145),(113,135,124,146),(114,136,125,147),(115,137,126,148),(116,138,127,149),(117,139,128,150),(118,140,129,151),(119,141,130,152),(120,142,131,153),(121,143,132,154)]])

C11⋊Q16 is a maximal subgroup of   D4.D22  Q8.D22  Q16×D11  Q16⋊D11  C44.C23  D4.8D22  D4.9D22
C11⋊Q16 is a maximal quotient of   C44.Q8  C22.Q16  Q8⋊Dic11

32 conjugacy classes

class 1  2 4A4B4C8A8B11A···11E22A···22E44A···44O
order124448811···1122···2244···44
size11244422222···22···24···4

32 irreducible representations

dim1111222224
type+++++-++-
imageC1C2C2C2D4Q16D11D22C11⋊D4C11⋊Q16
kernelC11⋊Q16C11⋊C8Dic22Q8×C11C22C11Q8C4C2C1
# reps11111255105

Matrix representation of C11⋊Q16 in GL4(𝔽89) generated by

0100
884700
0010
0001
,
402900
404900
003257
003232
,
88000
08800
00341
004186
G:=sub<GL(4,GF(89))| [0,88,0,0,1,47,0,0,0,0,1,0,0,0,0,1],[40,40,0,0,29,49,0,0,0,0,32,32,0,0,57,32],[88,0,0,0,0,88,0,0,0,0,3,41,0,0,41,86] >;

C11⋊Q16 in GAP, Magma, Sage, TeX

C_{11}\rtimes Q_{16}
% in TeX

G:=Group("C11:Q16");
// GroupNames label

G:=SmallGroup(176,17);
// by ID

G=gap.SmallGroup(176,17);
# by ID

G:=PCGroup([5,-2,-2,-2,-2,-11,40,61,46,182,97,42,4004]);
// Polycyclic

G:=Group<a,b,c|a^11=b^8=1,c^2=b^4,b*a*b^-1=a^-1,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations

Export

Subgroup lattice of C11⋊Q16 in TeX

׿
×
𝔽