extension | φ:Q→Out N | d | ρ | Label | ID |
(C3×Q8).1(C2×C4) = C3⋊Q16⋊C4 | φ: C2×C4/C2 → C22 ⊆ Out C3×Q8 | 192 | | (C3xQ8).1(C2xC4) | 192,348 |
(C3×Q8).2(C2×C4) = Dic3⋊4Q16 | φ: C2×C4/C2 → C22 ⊆ Out C3×Q8 | 192 | | (C3xQ8).2(C2xC4) | 192,349 |
(C3×Q8).3(C2×C4) = (S3×Q8)⋊C4 | φ: C2×C4/C2 → C22 ⊆ Out C3×Q8 | 96 | | (C3xQ8).3(C2xC4) | 192,361 |
(C3×Q8).4(C2×C4) = C4⋊C4.150D6 | φ: C2×C4/C2 → C22 ⊆ Out C3×Q8 | 96 | | (C3xQ8).4(C2xC4) | 192,363 |
(C3×Q8).5(C2×C4) = C42⋊3D6 | φ: C2×C4/C2 → C22 ⊆ Out C3×Q8 | 48 | 4 | (C3xQ8).5(C2xC4) | 192,380 |
(C3×Q8).6(C2×C4) = M4(2).22D6 | φ: C2×C4/C2 → C22 ⊆ Out C3×Q8 | 48 | 4 | (C3xQ8).6(C2xC4) | 192,382 |
(C3×Q8).7(C2×C4) = C42.196D6 | φ: C2×C4/C2 → C22 ⊆ Out C3×Q8 | 48 | 4 | (C3xQ8).7(C2xC4) | 192,383 |
(C3×Q8).8(C2×C4) = Dic3×Q16 | φ: C2×C4/C2 → C22 ⊆ Out C3×Q8 | 192 | | (C3xQ8).8(C2xC4) | 192,740 |
(C3×Q8).9(C2×C4) = Q16⋊Dic3 | φ: C2×C4/C2 → C22 ⊆ Out C3×Q8 | 192 | | (C3xQ8).9(C2xC4) | 192,743 |
(C3×Q8).10(C2×C4) = D8⋊5Dic3 | φ: C2×C4/C2 → C22 ⊆ Out C3×Q8 | 48 | 4 | (C3xQ8).10(C2xC4) | 192,755 |
(C3×Q8).11(C2×C4) = D8⋊4Dic3 | φ: C2×C4/C2 → C22 ⊆ Out C3×Q8 | 48 | 4 | (C3xQ8).11(C2xC4) | 192,756 |
(C3×Q8).12(C2×C4) = C4×C3⋊Q16 | φ: C2×C4/C4 → C2 ⊆ Out C3×Q8 | 192 | | (C3xQ8).12(C2xC4) | 192,588 |
(C3×Q8).13(C2×C4) = C42.59D6 | φ: C2×C4/C4 → C2 ⊆ Out C3×Q8 | 192 | | (C3xQ8).13(C2xC4) | 192,589 |
(C3×Q8).14(C2×C4) = C24.100D4 | φ: C2×C4/C4 → C2 ⊆ Out C3×Q8 | 48 | 4 | (C3xQ8).14(C2xC4) | 192,703 |
(C3×Q8).15(C2×C4) = C24.54D4 | φ: C2×C4/C4 → C2 ⊆ Out C3×Q8 | 48 | 4 | (C3xQ8).15(C2xC4) | 192,704 |
(C3×Q8).16(C2×C4) = C42.125D6 | φ: C2×C4/C4 → C2 ⊆ Out C3×Q8 | 96 | | (C3xQ8).16(C2xC4) | 192,1131 |
(C3×Q8).17(C2×C4) = S3×C8○D4 | φ: C2×C4/C4 → C2 ⊆ Out C3×Q8 | 48 | 4 | (C3xQ8).17(C2xC4) | 192,1308 |
(C3×Q8).18(C2×C4) = M4(2)⋊28D6 | φ: C2×C4/C4 → C2 ⊆ Out C3×Q8 | 48 | 4 | (C3xQ8).18(C2xC4) | 192,1309 |
(C3×Q8).19(C2×C4) = C12×Q16 | φ: C2×C4/C4 → C2 ⊆ Out C3×Q8 | 192 | | (C3xQ8).19(C2xC4) | 192,872 |
(C3×Q8).20(C2×C4) = C3×Q16⋊C4 | φ: C2×C4/C4 → C2 ⊆ Out C3×Q8 | 192 | | (C3xQ8).20(C2xC4) | 192,874 |
(C3×Q8).21(C2×C4) = C3×C8○D8 | φ: C2×C4/C4 → C2 ⊆ Out C3×Q8 | 48 | 2 | (C3xQ8).21(C2xC4) | 192,876 |
(C3×Q8).22(C2×C4) = C3×C8.26D4 | φ: C2×C4/C4 → C2 ⊆ Out C3×Q8 | 48 | 4 | (C3xQ8).22(C2xC4) | 192,877 |
(C3×Q8).23(C2×C4) = (C6×Q8)⋊6C4 | φ: C2×C4/C22 → C2 ⊆ Out C3×Q8 | 96 | | (C3xQ8).23(C2xC4) | 192,784 |
(C3×Q8).24(C2×C4) = C4○D4⋊4Dic3 | φ: C2×C4/C22 → C2 ⊆ Out C3×Q8 | 96 | | (C3xQ8).24(C2xC4) | 192,792 |
(C3×Q8).25(C2×C4) = (C6×D4)⋊9C4 | φ: C2×C4/C22 → C2 ⊆ Out C3×Q8 | 48 | 4 | (C3xQ8).25(C2xC4) | 192,795 |
(C3×Q8).26(C2×C4) = C6.422- (1+4) | φ: C2×C4/C22 → C2 ⊆ Out C3×Q8 | 96 | | (C3xQ8).26(C2xC4) | 192,1371 |
(C3×Q8).27(C2×C4) = C2×D4.Dic3 | φ: C2×C4/C22 → C2 ⊆ Out C3×Q8 | 96 | | (C3xQ8).27(C2xC4) | 192,1377 |
(C3×Q8).28(C2×C4) = C12.76C24 | φ: C2×C4/C22 → C2 ⊆ Out C3×Q8 | 48 | 4 | (C3xQ8).28(C2xC4) | 192,1378 |
(C3×Q8).29(C2×C4) = C3×C23.24D4 | φ: C2×C4/C22 → C2 ⊆ Out C3×Q8 | 96 | | (C3xQ8).29(C2xC4) | 192,849 |
(C3×Q8).30(C2×C4) = C3×C23.38D4 | φ: C2×C4/C22 → C2 ⊆ Out C3×Q8 | 96 | | (C3xQ8).30(C2xC4) | 192,852 |
(C3×Q8).31(C2×C4) = C3×C42⋊C22 | φ: C2×C4/C22 → C2 ⊆ Out C3×Q8 | 48 | 4 | (C3xQ8).31(C2xC4) | 192,854 |
(C3×Q8).32(C2×C4) = C3×C23.32C23 | φ: trivial image | 96 | | (C3xQ8).32(C2xC4) | 192,1408 |
(C3×Q8).33(C2×C4) = C6×C8○D4 | φ: trivial image | 96 | | (C3xQ8).33(C2xC4) | 192,1456 |
(C3×Q8).34(C2×C4) = C3×Q8○M4(2) | φ: trivial image | 48 | 4 | (C3xQ8).34(C2xC4) | 192,1457 |