metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C24.54D4, M4(2).37D6, D4⋊S3⋊6C4, C8○D4⋊11S3, D4.S3⋊6C4, D4.8(C4×S3), C3⋊Q16⋊6C4, C6.82(C4×D4), C8○D12⋊14C2, C3⋊4(C8.26D4), Q8⋊2S3⋊6C4, C4○D4.51D6, C24⋊C4⋊29C2, (C2×C8).191D6, Q8.13(C4×S3), D12.19(C2×C4), C12.448(C2×D4), C8.47(C3⋊D4), D12⋊C4⋊14C2, Q8⋊3Dic3⋊3C2, C12.30(C22×C4), Dic6.19(C2×C4), Q8.13D6.3C2, C12.53D4⋊14C2, (C2×C12).425C23, (C2×C24).280C22, C4○D12.45C22, C22.4(C4○D12), (C4×Dic3).41C22, C4.Dic3.45C22, (C3×M4(2)).40C22, C3⋊C8.6(C2×C4), C4.30(S3×C2×C4), (C3×C8○D4)⋊12C2, C2.27(C4×C3⋊D4), (C3×D4).15(C2×C4), C4.139(C2×C3⋊D4), (C3×Q8).15(C2×C4), (C2×C6).10(C4○D4), (C2×C3⋊C8).144C22, (C2×C4).515(C22×S3), (C3×C4○D4).40C22, SmallGroup(192,704)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C24.54D4
G = < a,b,c | a24=c2=1, b4=a12, bab-1=a5, cac=a17, cbc=a12b3 >
Subgroups: 240 in 104 conjugacy classes, 47 normal (all characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, Dic3, C12, C12, D6, C2×C6, C2×C6, C42, C2×C8, C2×C8, M4(2), M4(2), D8, SD16, Q16, C4○D4, C4○D4, C3⋊C8, C3⋊C8, C24, C24, Dic6, C4×S3, D12, C2×Dic3, C3⋊D4, C2×C12, C2×C12, C3×D4, C3×D4, C3×Q8, C8⋊C4, C4≀C2, C8.C4, C8○D4, C8○D4, C4○D8, S3×C8, C8⋊S3, C2×C3⋊C8, C4.Dic3, C4×Dic3, D4⋊S3, D4.S3, Q8⋊2S3, C3⋊Q16, C2×C24, C2×C24, C3×M4(2), C3×M4(2), C4○D12, C3×C4○D4, C8.26D4, C24⋊C4, C12.53D4, D12⋊C4, Q8⋊3Dic3, C8○D12, Q8.13D6, C3×C8○D4, C24.54D4
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, C23, D6, C22×C4, C2×D4, C4○D4, C4×S3, C3⋊D4, C22×S3, C4×D4, S3×C2×C4, C4○D12, C2×C3⋊D4, C8.26D4, C4×C3⋊D4, C24.54D4
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)
(1 16 19 10 13 4 7 22)(2 21 20 15 14 9 8 3)(5 12 23 6 17 24 11 18)(25 34 31 40 37 46 43 28)(26 39 32 45 38 27 44 33)(29 30 35 36 41 42 47 48)
(1 46)(2 39)(3 32)(4 25)(5 42)(6 35)(7 28)(8 45)(9 38)(10 31)(11 48)(12 41)(13 34)(14 27)(15 44)(16 37)(17 30)(18 47)(19 40)(20 33)(21 26)(22 43)(23 36)(24 29)
G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,16,19,10,13,4,7,22)(2,21,20,15,14,9,8,3)(5,12,23,6,17,24,11,18)(25,34,31,40,37,46,43,28)(26,39,32,45,38,27,44,33)(29,30,35,36,41,42,47,48), (1,46)(2,39)(3,32)(4,25)(5,42)(6,35)(7,28)(8,45)(9,38)(10,31)(11,48)(12,41)(13,34)(14,27)(15,44)(16,37)(17,30)(18,47)(19,40)(20,33)(21,26)(22,43)(23,36)(24,29)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,16,19,10,13,4,7,22)(2,21,20,15,14,9,8,3)(5,12,23,6,17,24,11,18)(25,34,31,40,37,46,43,28)(26,39,32,45,38,27,44,33)(29,30,35,36,41,42,47,48), (1,46)(2,39)(3,32)(4,25)(5,42)(6,35)(7,28)(8,45)(9,38)(10,31)(11,48)(12,41)(13,34)(14,27)(15,44)(16,37)(17,30)(18,47)(19,40)(20,33)(21,26)(22,43)(23,36)(24,29) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)], [(1,16,19,10,13,4,7,22),(2,21,20,15,14,9,8,3),(5,12,23,6,17,24,11,18),(25,34,31,40,37,46,43,28),(26,39,32,45,38,27,44,33),(29,30,35,36,41,42,47,48)], [(1,46),(2,39),(3,32),(4,25),(5,42),(6,35),(7,28),(8,45),(9,38),(10,31),(11,48),(12,41),(13,34),(14,27),(15,44),(16,37),(17,30),(18,47),(19,40),(20,33),(21,26),(22,43),(23,36),(24,29)]])
42 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 6A | 6B | 6C | 6D | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 8I | 8J | 12A | 12B | 12C | 12D | 12E | 24A | 24B | 24C | 24D | 24E | ··· | 24J |
order | 1 | 2 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 12 | 12 | 12 | 12 | 12 | 24 | 24 | 24 | 24 | 24 | ··· | 24 |
size | 1 | 1 | 2 | 4 | 12 | 2 | 1 | 1 | 2 | 4 | 12 | 12 | 12 | 2 | 4 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | 4 | 12 | 12 | 12 | 12 | 2 | 2 | 4 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | ··· | 4 |
42 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | |||||||||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C4 | C4 | C4 | C4 | S3 | D4 | D6 | D6 | D6 | C4○D4 | C3⋊D4 | C4×S3 | C4×S3 | C4○D12 | C8.26D4 | C24.54D4 |
kernel | C24.54D4 | C24⋊C4 | C12.53D4 | D12⋊C4 | Q8⋊3Dic3 | C8○D12 | Q8.13D6 | C3×C8○D4 | D4⋊S3 | D4.S3 | Q8⋊2S3 | C3⋊Q16 | C8○D4 | C24 | C2×C8 | M4(2) | C4○D4 | C2×C6 | C8 | D4 | Q8 | C22 | C3 | C1 |
# reps | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 1 | 2 | 1 | 1 | 1 | 2 | 4 | 2 | 2 | 4 | 2 | 4 |
Matrix representation of C24.54D4 ►in GL4(𝔽5) generated by
2 | 4 | 2 | 3 |
4 | 4 | 3 | 2 |
2 | 4 | 1 | 2 |
0 | 2 | 1 | 3 |
1 | 4 | 3 | 3 |
1 | 2 | 2 | 0 |
4 | 3 | 2 | 1 |
1 | 1 | 3 | 0 |
4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 |
0 | 0 | 1 | 0 |
0 | 4 | 0 | 0 |
G:=sub<GL(4,GF(5))| [2,4,2,0,4,4,4,2,2,3,1,1,3,2,2,3],[1,1,4,1,4,2,3,1,3,2,2,3,3,0,1,0],[4,0,0,0,0,0,0,4,0,0,1,0,0,4,0,0] >;
C24.54D4 in GAP, Magma, Sage, TeX
C_{24}._{54}D_4
% in TeX
G:=Group("C24.54D4");
// GroupNames label
G:=SmallGroup(192,704);
// by ID
G=gap.SmallGroup(192,704);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,253,387,58,136,1684,851,102,6278]);
// Polycyclic
G:=Group<a,b,c|a^24=c^2=1,b^4=a^12,b*a*b^-1=a^5,c*a*c=a^17,c*b*c=a^12*b^3>;
// generators/relations