Copied to
clipboard

G = C24.100D4order 192 = 26·3

23rd non-split extension by C24 of D4 acting via D4/C22=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C24.100D4, M4(2).36D6, D4⋊S37C4, C34(C8○D8), C8○D410S3, D4.S37C4, C3⋊Q167C4, D4.7(C4×S3), C6.81(C4×D4), C8○D1213C2, Q82S37C4, C4○D4.50D6, (C2×C8).278D6, Q8.12(C4×S3), (C8×Dic3)⋊32C2, D12.18(C2×C4), C12.447(C2×D4), C8.22(C3⋊D4), D12⋊C415C2, C12.29(C22×C4), Dic6.18(C2×C4), Q8.13D6.4C2, Q83Dic315C2, C12.53D415C2, (C2×C24).279C22, (C2×C12).424C23, C4○D12.44C22, C22.3(C4○D12), C4.Dic3.44C22, (C4×Dic3).236C22, (C3×M4(2)).39C22, C4.29(S3×C2×C4), C3⋊C8.10(C2×C4), (C3×C8○D4)⋊11C2, C2.26(C4×C3⋊D4), (C3×D4).14(C2×C4), (C2×C6).9(C4○D4), C4.138(C2×C3⋊D4), (C3×Q8).14(C2×C4), (C2×C3⋊C8).267C22, (C2×C4).514(C22×S3), (C3×C4○D4).39C22, SmallGroup(192,703)

Series: Derived Chief Lower central Upper central

C1C12 — C24.100D4
C1C3C6C12C2×C12C4○D12Q8.13D6 — C24.100D4
C3C6C12 — C24.100D4
C1C8C2×C8C8○D4

Generators and relations for C24.100D4
 G = < a,b,c | a24=c2=1, b4=a12, bab-1=cac=a17, cbc=a12b3 >

Subgroups: 240 in 106 conjugacy classes, 47 normal (all characteristic)
C1, C2, C2 [×3], C3, C4 [×2], C4 [×4], C22, C22 [×2], S3, C6, C6 [×2], C8 [×2], C8 [×4], C2×C4, C2×C4 [×3], D4, D4 [×3], Q8, Q8, Dic3 [×3], C12 [×2], C12, D6, C2×C6, C2×C6, C42, C2×C8, C2×C8 [×3], M4(2), M4(2) [×3], D8, SD16 [×2], Q16, C4○D4, C4○D4, C3⋊C8 [×2], C3⋊C8, C24 [×2], C24, Dic6, C4×S3, D12, C2×Dic3, C3⋊D4, C2×C12, C2×C12, C3×D4, C3×D4, C3×Q8, C4×C8, C4≀C2 [×2], C8.C4, C8○D4, C8○D4, C4○D8, S3×C8, C8⋊S3, C2×C3⋊C8, C4.Dic3, C4×Dic3, D4⋊S3, D4.S3, Q82S3, C3⋊Q16, C2×C24, C2×C24, C3×M4(2), C3×M4(2), C4○D12, C3×C4○D4, C8○D8, C8×Dic3, C12.53D4, D12⋊C4, Q83Dic3, C8○D12, Q8.13D6, C3×C8○D4, C24.100D4
Quotients: C1, C2 [×7], C4 [×4], C22 [×7], S3, C2×C4 [×6], D4 [×2], C23, D6 [×3], C22×C4, C2×D4, C4○D4, C4×S3 [×2], C3⋊D4 [×2], C22×S3, C4×D4, S3×C2×C4, C4○D12, C2×C3⋊D4, C8○D8, C4×C3⋊D4, C24.100D4

Smallest permutation representation of C24.100D4
On 48 points
Generators in S48
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)
(1 16 7 22 13 4 19 10)(2 9 8 15 14 21 20 3)(5 12 11 18 17 24 23 6)(25 34 43 28 37 46 31 40)(26 27 44 45 38 39 32 33)(29 30 47 48 41 42 35 36)
(1 37)(2 30)(3 47)(4 40)(5 33)(6 26)(7 43)(8 36)(9 29)(10 46)(11 39)(12 32)(13 25)(14 42)(15 35)(16 28)(17 45)(18 38)(19 31)(20 48)(21 41)(22 34)(23 27)(24 44)

G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,16,7,22,13,4,19,10)(2,9,8,15,14,21,20,3)(5,12,11,18,17,24,23,6)(25,34,43,28,37,46,31,40)(26,27,44,45,38,39,32,33)(29,30,47,48,41,42,35,36), (1,37)(2,30)(3,47)(4,40)(5,33)(6,26)(7,43)(8,36)(9,29)(10,46)(11,39)(12,32)(13,25)(14,42)(15,35)(16,28)(17,45)(18,38)(19,31)(20,48)(21,41)(22,34)(23,27)(24,44)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,16,7,22,13,4,19,10)(2,9,8,15,14,21,20,3)(5,12,11,18,17,24,23,6)(25,34,43,28,37,46,31,40)(26,27,44,45,38,39,32,33)(29,30,47,48,41,42,35,36), (1,37)(2,30)(3,47)(4,40)(5,33)(6,26)(7,43)(8,36)(9,29)(10,46)(11,39)(12,32)(13,25)(14,42)(15,35)(16,28)(17,45)(18,38)(19,31)(20,48)(21,41)(22,34)(23,27)(24,44) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)], [(1,16,7,22,13,4,19,10),(2,9,8,15,14,21,20,3),(5,12,11,18,17,24,23,6),(25,34,43,28,37,46,31,40),(26,27,44,45,38,39,32,33),(29,30,47,48,41,42,35,36)], [(1,37),(2,30),(3,47),(4,40),(5,33),(6,26),(7,43),(8,36),(9,29),(10,46),(11,39),(12,32),(13,25),(14,42),(15,35),(16,28),(17,45),(18,38),(19,31),(20,48),(21,41),(22,34),(23,27),(24,44)])

48 conjugacy classes

class 1 2A2B2C2D 3 4A4B4C4D4E4F4G4H4I6A6B6C6D8A8B8C8D8E8F8G8H8I8J8K8L8M8N12A12B12C12D12E24A24B24C24D24E···24J
order12222344444444466668888888888888812121212122424242424···24
size11241221124666612244411112244666612122244422224···4

48 irreducible representations

dim111111111111222222222224
type+++++++++++++
imageC1C2C2C2C2C2C2C2C4C4C4C4S3D4D6D6D6C4○D4C3⋊D4C4×S3C4×S3C4○D12C8○D8C24.100D4
kernelC24.100D4C8×Dic3C12.53D4D12⋊C4Q83Dic3C8○D12Q8.13D6C3×C8○D4D4⋊S3D4.S3Q82S3C3⋊Q16C8○D4C24C2×C8M4(2)C4○D4C2×C6C8D4Q8C22C3C1
# reps111111112222121112422484

Matrix representation of C24.100D4 in GL4(𝔽73) generated by

1100
72000
00220
00022
,
72000
1100
00100
00022
,
1000
727200
00022
00100
G:=sub<GL(4,GF(73))| [1,72,0,0,1,0,0,0,0,0,22,0,0,0,0,22],[72,1,0,0,0,1,0,0,0,0,10,0,0,0,0,22],[1,72,0,0,0,72,0,0,0,0,0,10,0,0,22,0] >;

C24.100D4 in GAP, Magma, Sage, TeX

C_{24}._{100}D_4
% in TeX

G:=Group("C24.100D4");
// GroupNames label

G:=SmallGroup(192,703);
// by ID

G=gap.SmallGroup(192,703);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,253,58,136,1684,851,102,6278]);
// Polycyclic

G:=Group<a,b,c|a^24=c^2=1,b^4=a^12,b*a*b^-1=c*a*c=a^17,c*b*c=a^12*b^3>;
// generators/relations

׿
×
𝔽