Copied to
clipboard

G = C24.100D4order 192 = 26·3

23rd non-split extension by C24 of D4 acting via D4/C22=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C24.100D4, M4(2).36D6, D4:S3:7C4, C3:4(C8oD8), C8oD4:10S3, D4.S3:7C4, C3:Q16:7C4, D4.7(C4xS3), C6.81(C4xD4), C8oD12:13C2, Q8:2S3:7C4, C4oD4.50D6, (C2xC8).278D6, Q8.12(C4xS3), (C8xDic3):32C2, D12.18(C2xC4), C12.447(C2xD4), C8.22(C3:D4), D12:C4:15C2, C12.29(C22xC4), Dic6.18(C2xC4), Q8.13D6.4C2, Q8:3Dic3:15C2, C12.53D4:15C2, (C2xC24).279C22, (C2xC12).424C23, C4oD12.44C22, C22.3(C4oD12), C4.Dic3.44C22, (C4xDic3).236C22, (C3xM4(2)).39C22, C4.29(S3xC2xC4), C3:C8.10(C2xC4), (C3xC8oD4):11C2, C2.26(C4xC3:D4), (C3xD4).14(C2xC4), (C2xC6).9(C4oD4), C4.138(C2xC3:D4), (C3xQ8).14(C2xC4), (C2xC3:C8).267C22, (C2xC4).514(C22xS3), (C3xC4oD4).39C22, SmallGroup(192,703)

Series: Derived Chief Lower central Upper central

C1C12 — C24.100D4
C1C3C6C12C2xC12C4oD12Q8.13D6 — C24.100D4
C3C6C12 — C24.100D4
C1C8C2xC8C8oD4

Generators and relations for C24.100D4
 G = < a,b,c | a24=c2=1, b4=a12, bab-1=cac=a17, cbc=a12b3 >

Subgroups: 240 in 106 conjugacy classes, 47 normal (all characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C8, C2xC4, C2xC4, D4, D4, Q8, Q8, Dic3, C12, C12, D6, C2xC6, C2xC6, C42, C2xC8, C2xC8, M4(2), M4(2), D8, SD16, Q16, C4oD4, C4oD4, C3:C8, C3:C8, C24, C24, Dic6, C4xS3, D12, C2xDic3, C3:D4, C2xC12, C2xC12, C3xD4, C3xD4, C3xQ8, C4xC8, C4wrC2, C8.C4, C8oD4, C8oD4, C4oD8, S3xC8, C8:S3, C2xC3:C8, C4.Dic3, C4xDic3, D4:S3, D4.S3, Q8:2S3, C3:Q16, C2xC24, C2xC24, C3xM4(2), C3xM4(2), C4oD12, C3xC4oD4, C8oD8, C8xDic3, C12.53D4, D12:C4, Q8:3Dic3, C8oD12, Q8.13D6, C3xC8oD4, C24.100D4
Quotients: C1, C2, C4, C22, S3, C2xC4, D4, C23, D6, C22xC4, C2xD4, C4oD4, C4xS3, C3:D4, C22xS3, C4xD4, S3xC2xC4, C4oD12, C2xC3:D4, C8oD8, C4xC3:D4, C24.100D4

Smallest permutation representation of C24.100D4
On 48 points
Generators in S48
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)
(1 16 7 22 13 4 19 10)(2 9 8 15 14 21 20 3)(5 12 11 18 17 24 23 6)(25 34 43 28 37 46 31 40)(26 27 44 45 38 39 32 33)(29 30 47 48 41 42 35 36)
(1 46)(2 39)(3 32)(4 25)(5 42)(6 35)(7 28)(8 45)(9 38)(10 31)(11 48)(12 41)(13 34)(14 27)(15 44)(16 37)(17 30)(18 47)(19 40)(20 33)(21 26)(22 43)(23 36)(24 29)

G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,16,7,22,13,4,19,10)(2,9,8,15,14,21,20,3)(5,12,11,18,17,24,23,6)(25,34,43,28,37,46,31,40)(26,27,44,45,38,39,32,33)(29,30,47,48,41,42,35,36), (1,46)(2,39)(3,32)(4,25)(5,42)(6,35)(7,28)(8,45)(9,38)(10,31)(11,48)(12,41)(13,34)(14,27)(15,44)(16,37)(17,30)(18,47)(19,40)(20,33)(21,26)(22,43)(23,36)(24,29)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,16,7,22,13,4,19,10)(2,9,8,15,14,21,20,3)(5,12,11,18,17,24,23,6)(25,34,43,28,37,46,31,40)(26,27,44,45,38,39,32,33)(29,30,47,48,41,42,35,36), (1,46)(2,39)(3,32)(4,25)(5,42)(6,35)(7,28)(8,45)(9,38)(10,31)(11,48)(12,41)(13,34)(14,27)(15,44)(16,37)(17,30)(18,47)(19,40)(20,33)(21,26)(22,43)(23,36)(24,29) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)], [(1,16,7,22,13,4,19,10),(2,9,8,15,14,21,20,3),(5,12,11,18,17,24,23,6),(25,34,43,28,37,46,31,40),(26,27,44,45,38,39,32,33),(29,30,47,48,41,42,35,36)], [(1,46),(2,39),(3,32),(4,25),(5,42),(6,35),(7,28),(8,45),(9,38),(10,31),(11,48),(12,41),(13,34),(14,27),(15,44),(16,37),(17,30),(18,47),(19,40),(20,33),(21,26),(22,43),(23,36),(24,29)]])

48 conjugacy classes

class 1 2A2B2C2D 3 4A4B4C4D4E4F4G4H4I6A6B6C6D8A8B8C8D8E8F8G8H8I8J8K8L8M8N12A12B12C12D12E24A24B24C24D24E···24J
order12222344444444466668888888888888812121212122424242424···24
size11241221124666612244411112244666612122244422224···4

48 irreducible representations

dim111111111111222222222224
type+++++++++++++
imageC1C2C2C2C2C2C2C2C4C4C4C4S3D4D6D6D6C4oD4C3:D4C4xS3C4xS3C4oD12C8oD8C24.100D4
kernelC24.100D4C8xDic3C12.53D4D12:C4Q8:3Dic3C8oD12Q8.13D6C3xC8oD4D4:S3D4.S3Q8:2S3C3:Q16C8oD4C24C2xC8M4(2)C4oD4C2xC6C8D4Q8C22C3C1
# reps111111112222121112422484

Matrix representation of C24.100D4 in GL4(F73) generated by

1100
72000
00220
00022
,
72000
1100
00100
00022
,
1000
727200
00022
00100
G:=sub<GL(4,GF(73))| [1,72,0,0,1,0,0,0,0,0,22,0,0,0,0,22],[72,1,0,0,0,1,0,0,0,0,10,0,0,0,0,22],[1,72,0,0,0,72,0,0,0,0,0,10,0,0,22,0] >;

C24.100D4 in GAP, Magma, Sage, TeX

C_{24}._{100}D_4
% in TeX

G:=Group("C24.100D4");
// GroupNames label

G:=SmallGroup(192,703);
// by ID

G=gap.SmallGroup(192,703);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,253,58,136,1684,851,102,6278]);
// Polycyclic

G:=Group<a,b,c|a^24=c^2=1,b^4=a^12,b*a*b^-1=c*a*c=a^17,c*b*c=a^12*b^3>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<