Copied to
clipboard

G = C3×C8.26D4order 192 = 26·3

Direct product of C3 and C8.26D4

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: C3×C8.26D4, D84C12, Q164C12, SD162C12, C24.105D4, C4≀C26C6, C8⋊C43C6, C8○D411C6, (C3×D8)⋊10C4, C8.6(C2×C12), C4○D8.3C6, C8.25(C3×D4), C4.83(C6×D4), C8.C44C6, C24.41(C2×C4), (C3×Q16)⋊10C4, (C3×SD16)⋊6C4, D4.4(C2×C12), C2.19(D4×C12), C6.121(C4×D4), Q8.9(C2×C12), C12.488(C2×D4), C42.11(C2×C6), C4.16(C22×C12), (C4×C12).252C22, C12.161(C22×C4), (C2×C12).911C23, (C2×C24).199C22, M4(2).12(C2×C6), (C3×M4(2)).46C22, (C3×C4≀C2)⋊14C2, (C3×C8⋊C4)⋊8C2, (C3×C8○D4)⋊16C2, (C2×C8).54(C2×C6), (C3×C4○D8).8C2, C4○D4.16(C2×C6), (C3×D4).21(C2×C4), (C3×Q8).22(C2×C4), (C3×C8.C4)⋊13C2, C22.2(C3×C4○D4), (C2×C6).50(C4○D4), (C2×C4).86(C22×C6), (C3×C4○D4).54C22, SmallGroup(192,877)

Series: Derived Chief Lower central Upper central

C1C4 — C3×C8.26D4
C1C2C4C2×C4C2×C12C3×M4(2)C3×C4≀C2 — C3×C8.26D4
C1C2C4 — C3×C8.26D4
C1C12C2×C24 — C3×C8.26D4

Generators and relations for C3×C8.26D4
 G = < a,b,c,d | a3=b8=c4=1, d2=b2, ab=ba, ac=ca, ad=da, cbc-1=dbd-1=b5, dcd-1=b2c-1 >

Subgroups: 154 in 104 conjugacy classes, 66 normal (34 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C6, C6, C8, C8, C8, C2×C4, C2×C4, D4, D4, Q8, C12, C12, C2×C6, C2×C6, C42, C2×C8, C2×C8, M4(2), M4(2), D8, SD16, Q16, C4○D4, C24, C24, C24, C2×C12, C2×C12, C3×D4, C3×D4, C3×Q8, C8⋊C4, C4≀C2, C8.C4, C8○D4, C4○D8, C4×C12, C2×C24, C2×C24, C3×M4(2), C3×M4(2), C3×D8, C3×SD16, C3×Q16, C3×C4○D4, C8.26D4, C3×C8⋊C4, C3×C4≀C2, C3×C8.C4, C3×C8○D4, C3×C4○D8, C3×C8.26D4
Quotients: C1, C2, C3, C4, C22, C6, C2×C4, D4, C23, C12, C2×C6, C22×C4, C2×D4, C4○D4, C2×C12, C3×D4, C22×C6, C4×D4, C22×C12, C6×D4, C3×C4○D4, C8.26D4, D4×C12, C3×C8.26D4

Smallest permutation representation of C3×C8.26D4
On 48 points
Generators in S48
(1 27 23)(2 28 24)(3 29 17)(4 30 18)(5 31 19)(6 32 20)(7 25 21)(8 26 22)(9 36 41)(10 37 42)(11 38 43)(12 39 44)(13 40 45)(14 33 46)(15 34 47)(16 35 48)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(2 6)(4 8)(9 11 13 15)(10 16 14 12)(18 22)(20 24)(26 30)(28 32)(33 39 37 35)(34 36 38 40)(41 43 45 47)(42 48 46 44)
(1 47 3 41 5 43 7 45)(2 44 4 46 6 48 8 42)(9 31 11 25 13 27 15 29)(10 28 12 30 14 32 16 26)(17 36 19 38 21 40 23 34)(18 33 20 35 22 37 24 39)

G:=sub<Sym(48)| (1,27,23)(2,28,24)(3,29,17)(4,30,18)(5,31,19)(6,32,20)(7,25,21)(8,26,22)(9,36,41)(10,37,42)(11,38,43)(12,39,44)(13,40,45)(14,33,46)(15,34,47)(16,35,48), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (2,6)(4,8)(9,11,13,15)(10,16,14,12)(18,22)(20,24)(26,30)(28,32)(33,39,37,35)(34,36,38,40)(41,43,45,47)(42,48,46,44), (1,47,3,41,5,43,7,45)(2,44,4,46,6,48,8,42)(9,31,11,25,13,27,15,29)(10,28,12,30,14,32,16,26)(17,36,19,38,21,40,23,34)(18,33,20,35,22,37,24,39)>;

G:=Group( (1,27,23)(2,28,24)(3,29,17)(4,30,18)(5,31,19)(6,32,20)(7,25,21)(8,26,22)(9,36,41)(10,37,42)(11,38,43)(12,39,44)(13,40,45)(14,33,46)(15,34,47)(16,35,48), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (2,6)(4,8)(9,11,13,15)(10,16,14,12)(18,22)(20,24)(26,30)(28,32)(33,39,37,35)(34,36,38,40)(41,43,45,47)(42,48,46,44), (1,47,3,41,5,43,7,45)(2,44,4,46,6,48,8,42)(9,31,11,25,13,27,15,29)(10,28,12,30,14,32,16,26)(17,36,19,38,21,40,23,34)(18,33,20,35,22,37,24,39) );

G=PermutationGroup([[(1,27,23),(2,28,24),(3,29,17),(4,30,18),(5,31,19),(6,32,20),(7,25,21),(8,26,22),(9,36,41),(10,37,42),(11,38,43),(12,39,44),(13,40,45),(14,33,46),(15,34,47),(16,35,48)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(2,6),(4,8),(9,11,13,15),(10,16,14,12),(18,22),(20,24),(26,30),(28,32),(33,39,37,35),(34,36,38,40),(41,43,45,47),(42,48,46,44)], [(1,47,3,41,5,43,7,45),(2,44,4,46,6,48,8,42),(9,31,11,25,13,27,15,29),(10,28,12,30,14,32,16,26),(17,36,19,38,21,40,23,34),(18,33,20,35,22,37,24,39)]])

66 conjugacy classes

class 1 2A2B2C2D3A3B4A4B4C4D4E4F4G6A6B6C6D6E6F6G6H8A8B8C8D8E···8J12A12B12C12D12E12F12G···12N24A···24H24I···24T
order122223344444446666666688888···812121212121212···1224···2424···24
size112441111244441122444422224···41111224···42···24···4

66 irreducible representations

dim111111111111111111222244
type+++++++
imageC1C2C2C2C2C2C3C4C4C4C6C6C6C6C6C12C12C12D4C4○D4C3×D4C3×C4○D4C8.26D4C3×C8.26D4
kernelC3×C8.26D4C3×C8⋊C4C3×C4≀C2C3×C8.C4C3×C8○D4C3×C4○D8C8.26D4C3×D8C3×SD16C3×Q16C8⋊C4C4≀C2C8.C4C8○D4C4○D8D8SD16Q16C24C2×C6C8C22C3C1
# reps112121224224242484224424

Matrix representation of C3×C8.26D4 in GL4(𝔽73) generated by

8000
0800
0080
0008
,
012759
460270
002759
005446
,
10013
072014
004627
00027
,
014613
01059
11072
02072
G:=sub<GL(4,GF(73))| [8,0,0,0,0,8,0,0,0,0,8,0,0,0,0,8],[0,46,0,0,1,0,0,0,27,27,27,54,59,0,59,46],[1,0,0,0,0,72,0,0,0,0,46,0,13,14,27,27],[0,0,1,0,1,1,1,2,46,0,0,0,13,59,72,72] >;

C3×C8.26D4 in GAP, Magma, Sage, TeX

C_3\times C_8._{26}D_4
% in TeX

G:=Group("C3xC8.26D4");
// GroupNames label

G:=SmallGroup(192,877);
// by ID

G=gap.SmallGroup(192,877);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,-2,-2,336,365,2102,268,4204,2111,172,124]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^8=c^4=1,d^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d^-1=b^5,d*c*d^-1=b^2*c^-1>;
// generators/relations

׿
×
𝔽