Extensions 1→N→G→Q→1 with N=D8 and Q=D6

Direct product G=NxQ with N=D8 and Q=D6
dρLabelID
C2xS3xD848C2xS3xD8192,1313

Semidirect products G=N:Q with N=D8 and Q=D6
extensionφ:Q→Out NdρLabelID
D8:1D6 = S3xD16φ: D6/S3C2 ⊆ Out D8484+D8:1D6192,469
D8:2D6 = D8:D6φ: D6/S3C2 ⊆ Out D8484D8:2D6192,470
D8:3D6 = S3xC8:C22φ: D6/S3C2 ⊆ Out D8248+D8:3D6192,1331
D8:4D6 = D8:4D6φ: D6/S3C2 ⊆ Out D8488-D8:4D6192,1332
D8:5D6 = D8:5D6φ: D6/S3C2 ⊆ Out D8488+D8:5D6192,1333
D8:6D6 = D8:6D6φ: D6/S3C2 ⊆ Out D8488-D8:6D6192,1334
D8:7D6 = C2xC3:D16φ: D6/C6C2 ⊆ Out D896D8:7D6192,705
D8:8D6 = Q16:D6φ: D6/C6C2 ⊆ Out D8484+D8:8D6192,752
D8:9D6 = C2xD8:S3φ: D6/C6C2 ⊆ Out D848D8:9D6192,1314
D8:10D6 = SD16:D6φ: D6/C6C2 ⊆ Out D8484D8:10D6192,1327
D8:11D6 = D8:11D6φ: D6/C6C2 ⊆ Out D8484D8:11D6192,1329
D8:12D6 = C2xD8:3S3φ: trivial image96D8:12D6192,1315
D8:13D6 = D8:13D6φ: trivial image484D8:13D6192,1316
D8:14D6 = S3xC4oD8φ: trivial image484D8:14D6192,1326
D8:15D6 = D8:15D6φ: trivial image484+D8:15D6192,1328

Non-split extensions G=N.Q with N=D8 and Q=D6
extensionφ:Q→Out NdρLabelID
D8.1D6 = D16:3S3φ: D6/S3C2 ⊆ Out D8964-D8.1D6192,471
D8.2D6 = S3xSD32φ: D6/S3C2 ⊆ Out D8484D8.2D6192,472
D8.3D6 = D48:C2φ: D6/S3C2 ⊆ Out D8484+D8.3D6192,473
D8.4D6 = SD32:S3φ: D6/S3C2 ⊆ Out D8964-D8.4D6192,474
D8.5D6 = D6.2D8φ: D6/S3C2 ⊆ Out D8964D8.5D6192,475
D8.6D6 = D8.D6φ: D6/C6C2 ⊆ Out D8484D8.6D6192,706
D8.7D6 = C2xD8.S3φ: D6/C6C2 ⊆ Out D896D8.7D6192,707
D8.8D6 = Q16.D6φ: D6/C6C2 ⊆ Out D8964D8.8D6192,753
D8.9D6 = D8.9D6φ: D6/C6C2 ⊆ Out D8964-D8.9D6192,754
D8.10D6 = D8.10D6φ: trivial image964-D8.10D6192,1330

׿
x
:
Z
F
o
wr
Q
<