Copied to
clipboard

G = Q16:D6order 192 = 26·3

2nd semidirect product of Q16 and D6 acting via D6/C6=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D8:8D6, Q16:7D6, C24.32D4, C12.51D8, C24.29C23, D24.11C22, C4oD8:2S3, (C2xC6).9D8, C3:D16:6C2, C3:C16:4C22, C6.68(C2xD8), (C2xC8).98D6, (C2xD24):22C2, C3:5(C16:C22), C8.6D6:6C2, (C3xD8):8C22, C8.7(C3:D4), C12.C8:6C2, C4.24(D4:S3), (C2xC12).185D4, C12.191(C2xD4), C8.35(C22xS3), (C3xQ16):7C22, C22.5(D4:S3), (C2xC24).104C22, (C3xC4oD8):4C2, C2.23(C2xD4:S3), C4.17(C2xC3:D4), (C2xC4).81(C3:D4), SmallGroup(192,752)

Series: Derived Chief Lower central Upper central

C1C24 — Q16:D6
C1C3C6C12C24D24C2xD24 — Q16:D6
C3C6C12C24 — Q16:D6
C1C2C2xC4C2xC8C4oD8

Generators and relations for Q16:D6
 G = < a,b,c,d | a8=c6=d2=1, b2=a4, bab-1=dad=a-1, ac=ca, cbc-1=a4b, dbd=a3b, dcd=c-1 >

Subgroups: 360 in 90 conjugacy classes, 35 normal (27 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C2xC4, C2xC4, D4, Q8, C23, C12, C12, D6, C2xC6, C2xC6, C16, C2xC8, D8, D8, SD16, Q16, C2xD4, C4oD4, C24, D12, C2xC12, C2xC12, C3xD4, C3xQ8, C22xS3, M5(2), D16, SD32, C2xD8, C4oD8, C3:C16, D24, D24, C2xC24, C3xD8, C3xSD16, C3xQ16, C2xD12, C3xC4oD4, C16:C22, C12.C8, C3:D16, C8.6D6, C2xD24, C3xC4oD8, Q16:D6
Quotients: C1, C2, C22, S3, D4, C23, D6, D8, C2xD4, C3:D4, C22xS3, C2xD8, D4:S3, C2xC3:D4, C16:C22, C2xD4:S3, Q16:D6

Character table of Q16:D6

 class 12A2B2C2D2E34A4B4C6A6B6C6D8A8B8C12A12B12C12D12E16A16B16C16D24A24B24C24D
 size 112824242228248822422488121212124444
ρ1111111111111111111111111111111    trivial
ρ211-1-1-111-1111-1-1-111-1-1-11111-1-11-11-11    linear of order 2
ρ311-1-11-11-1111-1-1-111-1-1-1111-111-1-11-11    linear of order 2
ρ41111-1-11111111111111111-1-1-1-11111    linear of order 2
ρ5111-1-1-1111-111-1-1111111-1-111111111    linear of order 2
ρ611-111-11-11-11-11111-1-1-11-1-11-1-11-11-11    linear of order 2
ρ711-11-111-11-11-11111-1-1-11-1-1-111-1-11-11    linear of order 2
ρ8111-111111-111-1-1111111-1-1-1-1-1-11111    linear of order 2
ρ922200022202200-2-2-2222000000-2-2-2-2    orthogonal lifted from D4
ρ10222200-1222-1-1-1-1222-1-1-1-1-10000-1-1-1-1    orthogonal lifted from S3
ρ11222-200-122-2-1-111222-1-1-1110000-1-1-1-1    orthogonal lifted from D6
ρ1222-20002-2202-200-2-22-2-220000002-22-2    orthogonal lifted from D4
ρ1322-2200-1-22-2-11-1-122-211-11100001-11-1    orthogonal lifted from D6
ρ1422-2-200-1-222-111122-211-1-1-100001-11-1    orthogonal lifted from D6
ρ1522-200022-202-20000022-200-22-220000    orthogonal lifted from D8
ρ1622-200022-202-20000022-2002-22-20000    orthogonal lifted from D8
ρ172220002-2-202200000-2-2-200-2-2220000    orthogonal lifted from D8
ρ182220002-2-202200000-2-2-20022-2-20000    orthogonal lifted from D8
ρ1922-2000-1-220-11-3--3-2-2211-1-3--30000-11-11    complex lifted from C3:D4
ρ20222000-1220-1-1--3-3-2-2-2-1-1-1-3--300001111    complex lifted from C3:D4
ρ2122-2000-1-220-11--3-3-2-2211-1--3-30000-11-11    complex lifted from C3:D4
ρ22222000-1220-1-1-3--3-2-2-2-1-1-1--3-300001111    complex lifted from C3:D4
ρ23444000-2-4-40-2-2000002220000000000    orthogonal lifted from D4:S3, Schur index 2
ρ2444-4000-24-40-2200000-2-220000000000    orthogonal lifted from D4:S3, Schur index 2
ρ254-400004000-400022-2200000000000-22022    orthogonal lifted from C16:C22
ρ264-400004000-4000-222200000000000220-22    orthogonal lifted from C16:C22
ρ274-40000-2000200022-220-2323000000062-6-2    orthogonal faithful
ρ284-40000-2000200022-22023-230000000-626-2    orthogonal faithful
ρ294-40000-20002000-2222023-2300000006-2-62    orthogonal faithful
ρ304-40000-20002000-22220-23230000000-6-262    orthogonal faithful

Smallest permutation representation of Q16:D6
On 48 points
Generators in S48
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(1 13 5 9)(2 12 6 16)(3 11 7 15)(4 10 8 14)(17 28 21 32)(18 27 22 31)(19 26 23 30)(20 25 24 29)(33 47 37 43)(34 46 38 42)(35 45 39 41)(36 44 40 48)
(1 38 25)(2 39 26)(3 40 27)(4 33 28)(5 34 29)(6 35 30)(7 36 31)(8 37 32)(9 42 20 13 46 24)(10 43 21 14 47 17)(11 44 22 15 48 18)(12 45 23 16 41 19)
(1 25)(2 32)(3 31)(4 30)(5 29)(6 28)(7 27)(8 26)(9 17)(10 24)(11 23)(12 22)(13 21)(14 20)(15 19)(16 18)(33 35)(36 40)(37 39)(41 48)(42 47)(43 46)(44 45)

G:=sub<Sym(48)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,13,5,9)(2,12,6,16)(3,11,7,15)(4,10,8,14)(17,28,21,32)(18,27,22,31)(19,26,23,30)(20,25,24,29)(33,47,37,43)(34,46,38,42)(35,45,39,41)(36,44,40,48), (1,38,25)(2,39,26)(3,40,27)(4,33,28)(5,34,29)(6,35,30)(7,36,31)(8,37,32)(9,42,20,13,46,24)(10,43,21,14,47,17)(11,44,22,15,48,18)(12,45,23,16,41,19), (1,25)(2,32)(3,31)(4,30)(5,29)(6,28)(7,27)(8,26)(9,17)(10,24)(11,23)(12,22)(13,21)(14,20)(15,19)(16,18)(33,35)(36,40)(37,39)(41,48)(42,47)(43,46)(44,45)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,13,5,9)(2,12,6,16)(3,11,7,15)(4,10,8,14)(17,28,21,32)(18,27,22,31)(19,26,23,30)(20,25,24,29)(33,47,37,43)(34,46,38,42)(35,45,39,41)(36,44,40,48), (1,38,25)(2,39,26)(3,40,27)(4,33,28)(5,34,29)(6,35,30)(7,36,31)(8,37,32)(9,42,20,13,46,24)(10,43,21,14,47,17)(11,44,22,15,48,18)(12,45,23,16,41,19), (1,25)(2,32)(3,31)(4,30)(5,29)(6,28)(7,27)(8,26)(9,17)(10,24)(11,23)(12,22)(13,21)(14,20)(15,19)(16,18)(33,35)(36,40)(37,39)(41,48)(42,47)(43,46)(44,45) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(1,13,5,9),(2,12,6,16),(3,11,7,15),(4,10,8,14),(17,28,21,32),(18,27,22,31),(19,26,23,30),(20,25,24,29),(33,47,37,43),(34,46,38,42),(35,45,39,41),(36,44,40,48)], [(1,38,25),(2,39,26),(3,40,27),(4,33,28),(5,34,29),(6,35,30),(7,36,31),(8,37,32),(9,42,20,13,46,24),(10,43,21,14,47,17),(11,44,22,15,48,18),(12,45,23,16,41,19)], [(1,25),(2,32),(3,31),(4,30),(5,29),(6,28),(7,27),(8,26),(9,17),(10,24),(11,23),(12,22),(13,21),(14,20),(15,19),(16,18),(33,35),(36,40),(37,39),(41,48),(42,47),(43,46),(44,45)]])

Matrix representation of Q16:D6 in GL4(F97) generated by

161800
799500
009579
001816
,
00960
00096
1000
0100
,
969600
1000
0011
00960
,
969600
0100
009516
00182
G:=sub<GL(4,GF(97))| [16,79,0,0,18,95,0,0,0,0,95,18,0,0,79,16],[0,0,1,0,0,0,0,1,96,0,0,0,0,96,0,0],[96,1,0,0,96,0,0,0,0,0,1,96,0,0,1,0],[96,0,0,0,96,1,0,0,0,0,95,18,0,0,16,2] >;

Q16:D6 in GAP, Magma, Sage, TeX

Q_{16}\rtimes D_6
% in TeX

G:=Group("Q16:D6");
// GroupNames label

G:=SmallGroup(192,752);
// by ID

G=gap.SmallGroup(192,752);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,254,387,675,185,192,1684,438,102,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^8=c^6=d^2=1,b^2=a^4,b*a*b^-1=d*a*d=a^-1,a*c=c*a,c*b*c^-1=a^4*b,d*b*d=a^3*b,d*c*d=c^-1>;
// generators/relations

Export

Character table of Q16:D6 in TeX

׿
x
:
Z
F
o
wr
Q
<