metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D8:8D6, Q16:7D6, C24.32D4, C12.51D8, C24.29C23, D24.11C22, C4oD8:2S3, (C2xC6).9D8, C3:D16:6C2, C3:C16:4C22, C6.68(C2xD8), (C2xC8).98D6, (C2xD24):22C2, C3:5(C16:C22), C8.6D6:6C2, (C3xD8):8C22, C8.7(C3:D4), C12.C8:6C2, C4.24(D4:S3), (C2xC12).185D4, C12.191(C2xD4), C8.35(C22xS3), (C3xQ16):7C22, C22.5(D4:S3), (C2xC24).104C22, (C3xC4oD8):4C2, C2.23(C2xD4:S3), C4.17(C2xC3:D4), (C2xC4).81(C3:D4), SmallGroup(192,752)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for Q16:D6
G = < a,b,c,d | a8=c6=d2=1, b2=a4, bab-1=dad=a-1, ac=ca, cbc-1=a4b, dbd=a3b, dcd=c-1 >
Subgroups: 360 in 90 conjugacy classes, 35 normal (27 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C2xC4, C2xC4, D4, Q8, C23, C12, C12, D6, C2xC6, C2xC6, C16, C2xC8, D8, D8, SD16, Q16, C2xD4, C4oD4, C24, D12, C2xC12, C2xC12, C3xD4, C3xQ8, C22xS3, M5(2), D16, SD32, C2xD8, C4oD8, C3:C16, D24, D24, C2xC24, C3xD8, C3xSD16, C3xQ16, C2xD12, C3xC4oD4, C16:C22, C12.C8, C3:D16, C8.6D6, C2xD24, C3xC4oD8, Q16:D6
Quotients: C1, C2, C22, S3, D4, C23, D6, D8, C2xD4, C3:D4, C22xS3, C2xD8, D4:S3, C2xC3:D4, C16:C22, C2xD4:S3, Q16:D6
Character table of Q16:D6
class | 1 | 2A | 2B | 2C | 2D | 2E | 3 | 4A | 4B | 4C | 6A | 6B | 6C | 6D | 8A | 8B | 8C | 12A | 12B | 12C | 12D | 12E | 16A | 16B | 16C | 16D | 24A | 24B | 24C | 24D | |
size | 1 | 1 | 2 | 8 | 24 | 24 | 2 | 2 | 2 | 8 | 2 | 4 | 8 | 8 | 2 | 2 | 4 | 2 | 2 | 4 | 8 | 8 | 12 | 12 | 12 | 12 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | 2 | 2 | 0 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ11 | 2 | 2 | 2 | -2 | 0 | 0 | -1 | 2 | 2 | -2 | -1 | -1 | 1 | 1 | 2 | 2 | 2 | -1 | -1 | -1 | 1 | 1 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | orthogonal lifted from D6 |
ρ12 | 2 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | 2 | 0 | 2 | -2 | 0 | 0 | -2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 2 | -2 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | -2 | 2 | 0 | 0 | -1 | -2 | 2 | -2 | -1 | 1 | -1 | -1 | 2 | 2 | -2 | 1 | 1 | -1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | -1 | orthogonal lifted from D6 |
ρ14 | 2 | 2 | -2 | -2 | 0 | 0 | -1 | -2 | 2 | 2 | -1 | 1 | 1 | 1 | 2 | 2 | -2 | 1 | 1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | -1 | orthogonal lifted from D6 |
ρ15 | 2 | 2 | -2 | 0 | 0 | 0 | 2 | 2 | -2 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | -2 | 0 | 0 | -√2 | √2 | -√2 | √2 | 0 | 0 | 0 | 0 | orthogonal lifted from D8 |
ρ16 | 2 | 2 | -2 | 0 | 0 | 0 | 2 | 2 | -2 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | -2 | 0 | 0 | √2 | -√2 | √2 | -√2 | 0 | 0 | 0 | 0 | orthogonal lifted from D8 |
ρ17 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | -2 | -2 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | 0 | 0 | -√2 | -√2 | √2 | √2 | 0 | 0 | 0 | 0 | orthogonal lifted from D8 |
ρ18 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | -2 | -2 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | 0 | 0 | √2 | √2 | -√2 | -√2 | 0 | 0 | 0 | 0 | orthogonal lifted from D8 |
ρ19 | 2 | 2 | -2 | 0 | 0 | 0 | -1 | -2 | 2 | 0 | -1 | 1 | √-3 | -√-3 | -2 | -2 | 2 | 1 | 1 | -1 | √-3 | -√-3 | 0 | 0 | 0 | 0 | -1 | 1 | -1 | 1 | complex lifted from C3:D4 |
ρ20 | 2 | 2 | 2 | 0 | 0 | 0 | -1 | 2 | 2 | 0 | -1 | -1 | -√-3 | √-3 | -2 | -2 | -2 | -1 | -1 | -1 | √-3 | -√-3 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | complex lifted from C3:D4 |
ρ21 | 2 | 2 | -2 | 0 | 0 | 0 | -1 | -2 | 2 | 0 | -1 | 1 | -√-3 | √-3 | -2 | -2 | 2 | 1 | 1 | -1 | -√-3 | √-3 | 0 | 0 | 0 | 0 | -1 | 1 | -1 | 1 | complex lifted from C3:D4 |
ρ22 | 2 | 2 | 2 | 0 | 0 | 0 | -1 | 2 | 2 | 0 | -1 | -1 | √-3 | -√-3 | -2 | -2 | -2 | -1 | -1 | -1 | -√-3 | √-3 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | complex lifted from C3:D4 |
ρ23 | 4 | 4 | 4 | 0 | 0 | 0 | -2 | -4 | -4 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4:S3, Schur index 2 |
ρ24 | 4 | 4 | -4 | 0 | 0 | 0 | -2 | 4 | -4 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4:S3, Schur index 2 |
ρ25 | 4 | -4 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | -4 | 0 | 0 | 0 | 2√2 | -2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√2 | 0 | 2√2 | orthogonal lifted from C16:C22 |
ρ26 | 4 | -4 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | -4 | 0 | 0 | 0 | -2√2 | 2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√2 | 0 | -2√2 | orthogonal lifted from C16:C22 |
ρ27 | 4 | -4 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 2√2 | -2√2 | 0 | -2√3 | 2√3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √6 | √2 | -√6 | -√2 | orthogonal faithful |
ρ28 | 4 | -4 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 2√2 | -2√2 | 0 | 2√3 | -2√3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√6 | √2 | √6 | -√2 | orthogonal faithful |
ρ29 | 4 | -4 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | -2√2 | 2√2 | 0 | 2√3 | -2√3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √6 | -√2 | -√6 | √2 | orthogonal faithful |
ρ30 | 4 | -4 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | -2√2 | 2√2 | 0 | -2√3 | 2√3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√6 | -√2 | √6 | √2 | orthogonal faithful |
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(1 13 5 9)(2 12 6 16)(3 11 7 15)(4 10 8 14)(17 28 21 32)(18 27 22 31)(19 26 23 30)(20 25 24 29)(33 47 37 43)(34 46 38 42)(35 45 39 41)(36 44 40 48)
(1 38 25)(2 39 26)(3 40 27)(4 33 28)(5 34 29)(6 35 30)(7 36 31)(8 37 32)(9 42 20 13 46 24)(10 43 21 14 47 17)(11 44 22 15 48 18)(12 45 23 16 41 19)
(1 25)(2 32)(3 31)(4 30)(5 29)(6 28)(7 27)(8 26)(9 17)(10 24)(11 23)(12 22)(13 21)(14 20)(15 19)(16 18)(33 35)(36 40)(37 39)(41 48)(42 47)(43 46)(44 45)
G:=sub<Sym(48)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,13,5,9)(2,12,6,16)(3,11,7,15)(4,10,8,14)(17,28,21,32)(18,27,22,31)(19,26,23,30)(20,25,24,29)(33,47,37,43)(34,46,38,42)(35,45,39,41)(36,44,40,48), (1,38,25)(2,39,26)(3,40,27)(4,33,28)(5,34,29)(6,35,30)(7,36,31)(8,37,32)(9,42,20,13,46,24)(10,43,21,14,47,17)(11,44,22,15,48,18)(12,45,23,16,41,19), (1,25)(2,32)(3,31)(4,30)(5,29)(6,28)(7,27)(8,26)(9,17)(10,24)(11,23)(12,22)(13,21)(14,20)(15,19)(16,18)(33,35)(36,40)(37,39)(41,48)(42,47)(43,46)(44,45)>;
G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,13,5,9)(2,12,6,16)(3,11,7,15)(4,10,8,14)(17,28,21,32)(18,27,22,31)(19,26,23,30)(20,25,24,29)(33,47,37,43)(34,46,38,42)(35,45,39,41)(36,44,40,48), (1,38,25)(2,39,26)(3,40,27)(4,33,28)(5,34,29)(6,35,30)(7,36,31)(8,37,32)(9,42,20,13,46,24)(10,43,21,14,47,17)(11,44,22,15,48,18)(12,45,23,16,41,19), (1,25)(2,32)(3,31)(4,30)(5,29)(6,28)(7,27)(8,26)(9,17)(10,24)(11,23)(12,22)(13,21)(14,20)(15,19)(16,18)(33,35)(36,40)(37,39)(41,48)(42,47)(43,46)(44,45) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(1,13,5,9),(2,12,6,16),(3,11,7,15),(4,10,8,14),(17,28,21,32),(18,27,22,31),(19,26,23,30),(20,25,24,29),(33,47,37,43),(34,46,38,42),(35,45,39,41),(36,44,40,48)], [(1,38,25),(2,39,26),(3,40,27),(4,33,28),(5,34,29),(6,35,30),(7,36,31),(8,37,32),(9,42,20,13,46,24),(10,43,21,14,47,17),(11,44,22,15,48,18),(12,45,23,16,41,19)], [(1,25),(2,32),(3,31),(4,30),(5,29),(6,28),(7,27),(8,26),(9,17),(10,24),(11,23),(12,22),(13,21),(14,20),(15,19),(16,18),(33,35),(36,40),(37,39),(41,48),(42,47),(43,46),(44,45)]])
Matrix representation of Q16:D6 ►in GL4(F97) generated by
16 | 18 | 0 | 0 |
79 | 95 | 0 | 0 |
0 | 0 | 95 | 79 |
0 | 0 | 18 | 16 |
0 | 0 | 96 | 0 |
0 | 0 | 0 | 96 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
96 | 96 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 1 | 1 |
0 | 0 | 96 | 0 |
96 | 96 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 95 | 16 |
0 | 0 | 18 | 2 |
G:=sub<GL(4,GF(97))| [16,79,0,0,18,95,0,0,0,0,95,18,0,0,79,16],[0,0,1,0,0,0,0,1,96,0,0,0,0,96,0,0],[96,1,0,0,96,0,0,0,0,0,1,96,0,0,1,0],[96,0,0,0,96,1,0,0,0,0,95,18,0,0,16,2] >;
Q16:D6 in GAP, Magma, Sage, TeX
Q_{16}\rtimes D_6
% in TeX
G:=Group("Q16:D6");
// GroupNames label
G:=SmallGroup(192,752);
// by ID
G=gap.SmallGroup(192,752);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,254,387,675,185,192,1684,438,102,6278]);
// Polycyclic
G:=Group<a,b,c,d|a^8=c^6=d^2=1,b^2=a^4,b*a*b^-1=d*a*d=a^-1,a*c=c*a,c*b*c^-1=a^4*b,d*b*d=a^3*b,d*c*d=c^-1>;
// generators/relations
Export