Extensions 1→N→G→Q→1 with N=D4 and Q=C3xD4

Direct product G=NxQ with N=D4 and Q=C3xD4
dρLabelID
C3xD4248C3xD4^2192,1434

Semidirect products G=N:Q with N=D4 and Q=C3xD4
extensionφ:Q→Out NdρLabelID
D4:1(C3xD4) = C3xC4:D8φ: C3xD4/C12C2 ⊆ Out D496D4:1(C3xD4)192,892
D4:2(C3xD4) = C3xC22:D8φ: C3xD4/C2xC6C2 ⊆ Out D448D4:2(C3xD4)192,880
D4:3(C3xD4) = C3xD4:D4φ: C3xD4/C2xC6C2 ⊆ Out D496D4:3(C3xD4)192,882
D4:4(C3xD4) = C3xD4:4D4φ: C3xD4/C2xC6C2 ⊆ Out D4244D4:4(C3xD4)192,886
D4:5(C3xD4) = C3xD4:5D4φ: trivial image48D4:5(C3xD4)192,1435
D4:6(C3xD4) = C3xD4:6D4φ: trivial image96D4:6(C3xD4)192,1436

Non-split extensions G=N.Q with N=D4 and Q=C3xD4
extensionφ:Q→Out NdρLabelID
D4.1(C3xD4) = C3xD4.D4φ: C3xD4/C12C2 ⊆ Out D496D4.1(C3xD4)192,894
D4.2(C3xD4) = C3xD4.2D4φ: C3xD4/C12C2 ⊆ Out D496D4.2(C3xD4)192,896
D4.3(C3xD4) = C3xD4.3D4φ: C3xD4/C12C2 ⊆ Out D4484D4.3(C3xD4)192,904
D4.4(C3xD4) = C3xD4.4D4φ: C3xD4/C12C2 ⊆ Out D4484D4.4(C3xD4)192,905
D4.5(C3xD4) = C3xD4.5D4φ: C3xD4/C12C2 ⊆ Out D4964D4.5(C3xD4)192,906
D4.6(C3xD4) = C3xC22:SD16φ: C3xD4/C2xC6C2 ⊆ Out D448D4.6(C3xD4)192,883
D4.7(C3xD4) = C3xD4.7D4φ: C3xD4/C2xC6C2 ⊆ Out D496D4.7(C3xD4)192,885
D4.8(C3xD4) = C3xD4.8D4φ: C3xD4/C2xC6C2 ⊆ Out D4484D4.8(C3xD4)192,887
D4.9(C3xD4) = C3xD4.9D4φ: C3xD4/C2xC6C2 ⊆ Out D4484D4.9(C3xD4)192,888
D4.10(C3xD4) = C3xD4.10D4φ: C3xD4/C2xC6C2 ⊆ Out D4484D4.10(C3xD4)192,889
D4.11(C3xD4) = C3xD4oD8φ: trivial image484D4.11(C3xD4)192,1465
D4.12(C3xD4) = C3xD4oSD16φ: trivial image484D4.12(C3xD4)192,1466
D4.13(C3xD4) = C3xQ8oD8φ: trivial image964D4.13(C3xD4)192,1467

׿
x
:
Z
F
o
wr
Q
<