extension | φ:Q→Aut N | d | ρ | Label | ID |
C4.1(C2×Dic6) = Dic3.D8 | φ: C2×Dic6/Dic6 → C2 ⊆ Aut C4 | 96 | | C4.1(C2xDic6) | 192,318 |
C4.2(C2×Dic6) = D4⋊Dic6 | φ: C2×Dic6/Dic6 → C2 ⊆ Aut C4 | 96 | | C4.2(C2xDic6) | 192,320 |
C4.3(C2×Dic6) = D4.Dic6 | φ: C2×Dic6/Dic6 → C2 ⊆ Aut C4 | 96 | | C4.3(C2xDic6) | 192,322 |
C4.4(C2×Dic6) = D4.2Dic6 | φ: C2×Dic6/Dic6 → C2 ⊆ Aut C4 | 96 | | C4.4(C2xDic6) | 192,325 |
C4.5(C2×Dic6) = Q8⋊2Dic6 | φ: C2×Dic6/Dic6 → C2 ⊆ Aut C4 | 192 | | C4.5(C2xDic6) | 192,350 |
C4.6(C2×Dic6) = Q8⋊3Dic6 | φ: C2×Dic6/Dic6 → C2 ⊆ Aut C4 | 192 | | C4.6(C2xDic6) | 192,352 |
C4.7(C2×Dic6) = Q8.3Dic6 | φ: C2×Dic6/Dic6 → C2 ⊆ Aut C4 | 192 | | C4.7(C2xDic6) | 192,355 |
C4.8(C2×Dic6) = Q8.4Dic6 | φ: C2×Dic6/Dic6 → C2 ⊆ Aut C4 | 192 | | C4.8(C2xDic6) | 192,358 |
C4.9(C2×Dic6) = C12.50D8 | φ: C2×Dic6/Dic6 → C2 ⊆ Aut C4 | 96 | | C4.9(C2xDic6) | 192,566 |
C4.10(C2×Dic6) = C12.38SD16 | φ: C2×Dic6/Dic6 → C2 ⊆ Aut C4 | 96 | | C4.10(C2xDic6) | 192,567 |
C4.11(C2×Dic6) = D4.3Dic6 | φ: C2×Dic6/Dic6 → C2 ⊆ Aut C4 | 96 | | C4.11(C2xDic6) | 192,568 |
C4.12(C2×Dic6) = Q8⋊4Dic6 | φ: C2×Dic6/Dic6 → C2 ⊆ Aut C4 | 192 | | C4.12(C2xDic6) | 192,579 |
C4.13(C2×Dic6) = Q8⋊5Dic6 | φ: C2×Dic6/Dic6 → C2 ⊆ Aut C4 | 192 | | C4.13(C2xDic6) | 192,580 |
C4.14(C2×Dic6) = Q8.5Dic6 | φ: C2×Dic6/Dic6 → C2 ⊆ Aut C4 | 192 | | C4.14(C2xDic6) | 192,581 |
C4.15(C2×Dic6) = D4⋊5Dic6 | φ: C2×Dic6/Dic6 → C2 ⊆ Aut C4 | 96 | | C4.15(C2xDic6) | 192,1098 |
C4.16(C2×Dic6) = D4⋊6Dic6 | φ: C2×Dic6/Dic6 → C2 ⊆ Aut C4 | 96 | | C4.16(C2xDic6) | 192,1102 |
C4.17(C2×Dic6) = Q8×Dic6 | φ: C2×Dic6/Dic6 → C2 ⊆ Aut C4 | 192 | | C4.17(C2xDic6) | 192,1125 |
C4.18(C2×Dic6) = Q8⋊6Dic6 | φ: C2×Dic6/Dic6 → C2 ⊆ Aut C4 | 192 | | C4.18(C2xDic6) | 192,1128 |
C4.19(C2×Dic6) = Q8⋊7Dic6 | φ: C2×Dic6/Dic6 → C2 ⊆ Aut C4 | 192 | | C4.19(C2xDic6) | 192,1129 |
C4.20(C2×Dic6) = C24⋊5Q8 | φ: C2×Dic6/C2×Dic3 → C2 ⊆ Aut C4 | 192 | | C4.20(C2xDic6) | 192,414 |
C4.21(C2×Dic6) = C24⋊3Q8 | φ: C2×Dic6/C2×Dic3 → C2 ⊆ Aut C4 | 192 | | C4.21(C2xDic6) | 192,415 |
C4.22(C2×Dic6) = C8.8Dic6 | φ: C2×Dic6/C2×Dic3 → C2 ⊆ Aut C4 | 192 | | C4.22(C2xDic6) | 192,417 |
C4.23(C2×Dic6) = C24⋊2Q8 | φ: C2×Dic6/C2×Dic3 → C2 ⊆ Aut C4 | 192 | | C4.23(C2xDic6) | 192,433 |
C4.24(C2×Dic6) = C24⋊4Q8 | φ: C2×Dic6/C2×Dic3 → C2 ⊆ Aut C4 | 192 | | C4.24(C2xDic6) | 192,435 |
C4.25(C2×Dic6) = C8.6Dic6 | φ: C2×Dic6/C2×Dic3 → C2 ⊆ Aut C4 | 192 | | C4.25(C2xDic6) | 192,437 |
C4.26(C2×Dic6) = C2×C6.Q16 | φ: C2×Dic6/C2×Dic3 → C2 ⊆ Aut C4 | 192 | | C4.26(C2xDic6) | 192,521 |
C4.27(C2×Dic6) = C2×C12.Q8 | φ: C2×Dic6/C2×Dic3 → C2 ⊆ Aut C4 | 192 | | C4.27(C2xDic6) | 192,522 |
C4.28(C2×Dic6) = C4⋊C4.225D6 | φ: C2×Dic6/C2×Dic3 → C2 ⊆ Aut C4 | 96 | | C4.28(C2xDic6) | 192,523 |
C4.29(C2×Dic6) = C4⋊C4.232D6 | φ: C2×Dic6/C2×Dic3 → C2 ⊆ Aut C4 | 96 | | C4.29(C2xDic6) | 192,554 |
C4.30(C2×Dic6) = C4⋊C4.234D6 | φ: C2×Dic6/C2×Dic3 → C2 ⊆ Aut C4 | 96 | | C4.30(C2xDic6) | 192,557 |
C4.31(C2×Dic6) = C2×C4.Dic6 | φ: C2×Dic6/C2×Dic3 → C2 ⊆ Aut C4 | 192 | | C4.31(C2xDic6) | 192,1058 |
C4.32(C2×Dic6) = C6.72+ 1+4 | φ: C2×Dic6/C2×Dic3 → C2 ⊆ Aut C4 | 96 | | C4.32(C2xDic6) | 192,1059 |
C4.33(C2×Dic6) = C42.88D6 | φ: C2×Dic6/C2×Dic3 → C2 ⊆ Aut C4 | 96 | | C4.33(C2xDic6) | 192,1076 |
C4.34(C2×Dic6) = C42.90D6 | φ: C2×Dic6/C2×Dic3 → C2 ⊆ Aut C4 | 96 | | C4.34(C2xDic6) | 192,1078 |
C4.35(C2×Dic6) = C24⋊9Q8 | φ: C2×Dic6/C2×C12 → C2 ⊆ Aut C4 | 192 | | C4.35(C2xDic6) | 192,239 |
C4.36(C2×Dic6) = C24⋊8Q8 | φ: C2×Dic6/C2×C12 → C2 ⊆ Aut C4 | 192 | | C4.36(C2xDic6) | 192,241 |
C4.37(C2×Dic6) = C24.13Q8 | φ: C2×Dic6/C2×C12 → C2 ⊆ Aut C4 | 192 | | C4.37(C2xDic6) | 192,242 |
C4.38(C2×Dic6) = C8⋊Dic6 | φ: C2×Dic6/C2×C12 → C2 ⊆ Aut C4 | 192 | | C4.38(C2xDic6) | 192,261 |
C4.39(C2×Dic6) = C2×C8⋊Dic3 | φ: C2×Dic6/C2×C12 → C2 ⊆ Aut C4 | 192 | | C4.39(C2xDic6) | 192,663 |
C4.40(C2×Dic6) = C2×C24⋊1C4 | φ: C2×Dic6/C2×C12 → C2 ⊆ Aut C4 | 192 | | C4.40(C2xDic6) | 192,664 |
C4.41(C2×Dic6) = C23.27D12 | φ: C2×Dic6/C2×C12 → C2 ⊆ Aut C4 | 96 | | C4.41(C2xDic6) | 192,665 |
C4.42(C2×Dic6) = C23.52D12 | φ: C2×Dic6/C2×C12 → C2 ⊆ Aut C4 | 96 | | C4.42(C2xDic6) | 192,680 |
C4.43(C2×Dic6) = C2×C12.6Q8 | φ: C2×Dic6/C2×C12 → C2 ⊆ Aut C4 | 192 | | C4.43(C2xDic6) | 192,1028 |
C4.44(C2×Dic6) = C8×Dic6 | central extension (φ=1) | 192 | | C4.44(C2xDic6) | 192,237 |
C4.45(C2×Dic6) = C24⋊12Q8 | central extension (φ=1) | 192 | | C4.45(C2xDic6) | 192,238 |
C4.46(C2×Dic6) = C24⋊Q8 | central extension (φ=1) | 192 | | C4.46(C2xDic6) | 192,260 |
C4.47(C2×Dic6) = C2×C12⋊C8 | central extension (φ=1) | 192 | | C4.47(C2xDic6) | 192,482 |
C4.48(C2×Dic6) = C12⋊7M4(2) | central extension (φ=1) | 96 | | C4.48(C2xDic6) | 192,483 |
C4.49(C2×Dic6) = C42.43D6 | central extension (φ=1) | 96 | | C4.49(C2xDic6) | 192,558 |
C4.50(C2×Dic6) = C2×Dic3⋊C8 | central extension (φ=1) | 192 | | C4.50(C2xDic6) | 192,658 |
C4.51(C2×Dic6) = Dic3⋊C8⋊C2 | central extension (φ=1) | 96 | | C4.51(C2xDic6) | 192,661 |
C4.52(C2×Dic6) = Dic3⋊4M4(2) | central extension (φ=1) | 96 | | C4.52(C2xDic6) | 192,677 |
C4.53(C2×Dic6) = C12.88(C2×Q8) | central extension (φ=1) | 96 | | C4.53(C2xDic6) | 192,678 |
C4.54(C2×Dic6) = C42.274D6 | central extension (φ=1) | 96 | | C4.54(C2xDic6) | 192,1029 |