Extensions 1→N→G→Q→1 with N=C4 and Q=C2×Dic6

Direct product G=N×Q with N=C4 and Q=C2×Dic6
dρLabelID
C2×C4×Dic6192C2xC4xDic6192,1026

Semidirect products G=N:Q with N=C4 and Q=C2×Dic6
extensionφ:Q→Aut NdρLabelID
C41(C2×Dic6) = D4×Dic6φ: C2×Dic6/Dic6C2 ⊆ Aut C496C4:1(C2xDic6)192,1096
C42(C2×Dic6) = C2×C12⋊Q8φ: C2×Dic6/C2×Dic3C2 ⊆ Aut C4192C4:2(C2xDic6)192,1056
C43(C2×Dic6) = C2×C122Q8φ: C2×Dic6/C2×C12C2 ⊆ Aut C4192C4:3(C2xDic6)192,1027

Non-split extensions G=N.Q with N=C4 and Q=C2×Dic6
extensionφ:Q→Aut NdρLabelID
C4.1(C2×Dic6) = Dic3.D8φ: C2×Dic6/Dic6C2 ⊆ Aut C496C4.1(C2xDic6)192,318
C4.2(C2×Dic6) = D4⋊Dic6φ: C2×Dic6/Dic6C2 ⊆ Aut C496C4.2(C2xDic6)192,320
C4.3(C2×Dic6) = D4.Dic6φ: C2×Dic6/Dic6C2 ⊆ Aut C496C4.3(C2xDic6)192,322
C4.4(C2×Dic6) = D4.2Dic6φ: C2×Dic6/Dic6C2 ⊆ Aut C496C4.4(C2xDic6)192,325
C4.5(C2×Dic6) = Q82Dic6φ: C2×Dic6/Dic6C2 ⊆ Aut C4192C4.5(C2xDic6)192,350
C4.6(C2×Dic6) = Q83Dic6φ: C2×Dic6/Dic6C2 ⊆ Aut C4192C4.6(C2xDic6)192,352
C4.7(C2×Dic6) = Q8.3Dic6φ: C2×Dic6/Dic6C2 ⊆ Aut C4192C4.7(C2xDic6)192,355
C4.8(C2×Dic6) = Q8.4Dic6φ: C2×Dic6/Dic6C2 ⊆ Aut C4192C4.8(C2xDic6)192,358
C4.9(C2×Dic6) = C12.50D8φ: C2×Dic6/Dic6C2 ⊆ Aut C496C4.9(C2xDic6)192,566
C4.10(C2×Dic6) = C12.38SD16φ: C2×Dic6/Dic6C2 ⊆ Aut C496C4.10(C2xDic6)192,567
C4.11(C2×Dic6) = D4.3Dic6φ: C2×Dic6/Dic6C2 ⊆ Aut C496C4.11(C2xDic6)192,568
C4.12(C2×Dic6) = Q84Dic6φ: C2×Dic6/Dic6C2 ⊆ Aut C4192C4.12(C2xDic6)192,579
C4.13(C2×Dic6) = Q85Dic6φ: C2×Dic6/Dic6C2 ⊆ Aut C4192C4.13(C2xDic6)192,580
C4.14(C2×Dic6) = Q8.5Dic6φ: C2×Dic6/Dic6C2 ⊆ Aut C4192C4.14(C2xDic6)192,581
C4.15(C2×Dic6) = D45Dic6φ: C2×Dic6/Dic6C2 ⊆ Aut C496C4.15(C2xDic6)192,1098
C4.16(C2×Dic6) = D46Dic6φ: C2×Dic6/Dic6C2 ⊆ Aut C496C4.16(C2xDic6)192,1102
C4.17(C2×Dic6) = Q8×Dic6φ: C2×Dic6/Dic6C2 ⊆ Aut C4192C4.17(C2xDic6)192,1125
C4.18(C2×Dic6) = Q86Dic6φ: C2×Dic6/Dic6C2 ⊆ Aut C4192C4.18(C2xDic6)192,1128
C4.19(C2×Dic6) = Q87Dic6φ: C2×Dic6/Dic6C2 ⊆ Aut C4192C4.19(C2xDic6)192,1129
C4.20(C2×Dic6) = C245Q8φ: C2×Dic6/C2×Dic3C2 ⊆ Aut C4192C4.20(C2xDic6)192,414
C4.21(C2×Dic6) = C243Q8φ: C2×Dic6/C2×Dic3C2 ⊆ Aut C4192C4.21(C2xDic6)192,415
C4.22(C2×Dic6) = C8.8Dic6φ: C2×Dic6/C2×Dic3C2 ⊆ Aut C4192C4.22(C2xDic6)192,417
C4.23(C2×Dic6) = C242Q8φ: C2×Dic6/C2×Dic3C2 ⊆ Aut C4192C4.23(C2xDic6)192,433
C4.24(C2×Dic6) = C244Q8φ: C2×Dic6/C2×Dic3C2 ⊆ Aut C4192C4.24(C2xDic6)192,435
C4.25(C2×Dic6) = C8.6Dic6φ: C2×Dic6/C2×Dic3C2 ⊆ Aut C4192C4.25(C2xDic6)192,437
C4.26(C2×Dic6) = C2×C6.Q16φ: C2×Dic6/C2×Dic3C2 ⊆ Aut C4192C4.26(C2xDic6)192,521
C4.27(C2×Dic6) = C2×C12.Q8φ: C2×Dic6/C2×Dic3C2 ⊆ Aut C4192C4.27(C2xDic6)192,522
C4.28(C2×Dic6) = C4⋊C4.225D6φ: C2×Dic6/C2×Dic3C2 ⊆ Aut C496C4.28(C2xDic6)192,523
C4.29(C2×Dic6) = C4⋊C4.232D6φ: C2×Dic6/C2×Dic3C2 ⊆ Aut C496C4.29(C2xDic6)192,554
C4.30(C2×Dic6) = C4⋊C4.234D6φ: C2×Dic6/C2×Dic3C2 ⊆ Aut C496C4.30(C2xDic6)192,557
C4.31(C2×Dic6) = C2×C4.Dic6φ: C2×Dic6/C2×Dic3C2 ⊆ Aut C4192C4.31(C2xDic6)192,1058
C4.32(C2×Dic6) = C6.72+ 1+4φ: C2×Dic6/C2×Dic3C2 ⊆ Aut C496C4.32(C2xDic6)192,1059
C4.33(C2×Dic6) = C42.88D6φ: C2×Dic6/C2×Dic3C2 ⊆ Aut C496C4.33(C2xDic6)192,1076
C4.34(C2×Dic6) = C42.90D6φ: C2×Dic6/C2×Dic3C2 ⊆ Aut C496C4.34(C2xDic6)192,1078
C4.35(C2×Dic6) = C249Q8φ: C2×Dic6/C2×C12C2 ⊆ Aut C4192C4.35(C2xDic6)192,239
C4.36(C2×Dic6) = C248Q8φ: C2×Dic6/C2×C12C2 ⊆ Aut C4192C4.36(C2xDic6)192,241
C4.37(C2×Dic6) = C24.13Q8φ: C2×Dic6/C2×C12C2 ⊆ Aut C4192C4.37(C2xDic6)192,242
C4.38(C2×Dic6) = C8⋊Dic6φ: C2×Dic6/C2×C12C2 ⊆ Aut C4192C4.38(C2xDic6)192,261
C4.39(C2×Dic6) = C2×C8⋊Dic3φ: C2×Dic6/C2×C12C2 ⊆ Aut C4192C4.39(C2xDic6)192,663
C4.40(C2×Dic6) = C2×C241C4φ: C2×Dic6/C2×C12C2 ⊆ Aut C4192C4.40(C2xDic6)192,664
C4.41(C2×Dic6) = C23.27D12φ: C2×Dic6/C2×C12C2 ⊆ Aut C496C4.41(C2xDic6)192,665
C4.42(C2×Dic6) = C23.52D12φ: C2×Dic6/C2×C12C2 ⊆ Aut C496C4.42(C2xDic6)192,680
C4.43(C2×Dic6) = C2×C12.6Q8φ: C2×Dic6/C2×C12C2 ⊆ Aut C4192C4.43(C2xDic6)192,1028
C4.44(C2×Dic6) = C8×Dic6central extension (φ=1)192C4.44(C2xDic6)192,237
C4.45(C2×Dic6) = C2412Q8central extension (φ=1)192C4.45(C2xDic6)192,238
C4.46(C2×Dic6) = C24⋊Q8central extension (φ=1)192C4.46(C2xDic6)192,260
C4.47(C2×Dic6) = C2×C12⋊C8central extension (φ=1)192C4.47(C2xDic6)192,482
C4.48(C2×Dic6) = C127M4(2)central extension (φ=1)96C4.48(C2xDic6)192,483
C4.49(C2×Dic6) = C42.43D6central extension (φ=1)96C4.49(C2xDic6)192,558
C4.50(C2×Dic6) = C2×Dic3⋊C8central extension (φ=1)192C4.50(C2xDic6)192,658
C4.51(C2×Dic6) = Dic3⋊C8⋊C2central extension (φ=1)96C4.51(C2xDic6)192,661
C4.52(C2×Dic6) = Dic34M4(2)central extension (φ=1)96C4.52(C2xDic6)192,677
C4.53(C2×Dic6) = C12.88(C2×Q8)central extension (φ=1)96C4.53(C2xDic6)192,678
C4.54(C2×Dic6) = C42.274D6central extension (φ=1)96C4.54(C2xDic6)192,1029

׿
×
𝔽