Extensions 1→N→G→Q→1 with N=C4 and Q=S3×Q8

Direct product G=N×Q with N=C4 and Q=S3×Q8
dρLabelID
C4×S3×Q896C4xS3xQ8192,1130

Semidirect products G=N:Q with N=C4 and Q=S3×Q8
extensionφ:Q→Aut NdρLabelID
C41(S3×Q8) = D128Q8φ: S3×Q8/Dic6C2 ⊆ Aut C496C4:1(S3xQ8)192,1286
C42(S3×Q8) = S3×C4⋊Q8φ: S3×Q8/C4×S3C2 ⊆ Aut C496C4:2(S3xQ8)192,1282
C43(S3×Q8) = Q8×D12φ: S3×Q8/C3×Q8C2 ⊆ Aut C496C4:3(S3xQ8)192,1134

Non-split extensions G=N.Q with N=C4 and Q=S3×Q8
extensionφ:Q→Aut NdρLabelID
C4.1(S3×Q8) = Dic6⋊Q8φ: S3×Q8/Dic6C2 ⊆ Aut C4192C4.1(S3xQ8)192,413
C4.2(S3×Q8) = Dic6.Q8φ: S3×Q8/Dic6C2 ⊆ Aut C4192C4.2(S3xQ8)192,416
C4.3(S3×Q8) = D12⋊Q8φ: S3×Q8/Dic6C2 ⊆ Aut C496C4.3(S3xQ8)192,429
C4.4(S3×Q8) = D12.Q8φ: S3×Q8/Dic6C2 ⊆ Aut C496C4.4(S3xQ8)192,430
C4.5(S3×Q8) = Dic3.Q16φ: S3×Q8/Dic6C2 ⊆ Aut C4192C4.5(S3xQ8)192,434
C4.6(S3×Q8) = Dic6.2Q8φ: S3×Q8/Dic6C2 ⊆ Aut C4192C4.6(S3xQ8)192,436
C4.7(S3×Q8) = D122Q8φ: S3×Q8/Dic6C2 ⊆ Aut C496C4.7(S3xQ8)192,449
C4.8(S3×Q8) = D12.2Q8φ: S3×Q8/Dic6C2 ⊆ Aut C496C4.8(S3xQ8)192,450
C4.9(S3×Q8) = Dic6.4Q8φ: S3×Q8/Dic6C2 ⊆ Aut C4192C4.9(S3xQ8)192,622
C4.10(S3×Q8) = D12.4Q8φ: S3×Q8/Dic6C2 ⊆ Aut C496C4.10(S3xQ8)192,625
C4.11(S3×Q8) = D125Q8φ: S3×Q8/Dic6C2 ⊆ Aut C496C4.11(S3xQ8)192,643
C4.12(S3×Q8) = D126Q8φ: S3×Q8/Dic6C2 ⊆ Aut C496C4.12(S3xQ8)192,646
C4.13(S3×Q8) = Dic65Q8φ: S3×Q8/Dic6C2 ⊆ Aut C4192C4.13(S3xQ8)192,650
C4.14(S3×Q8) = Dic66Q8φ: S3×Q8/Dic6C2 ⊆ Aut C4192C4.14(S3xQ8)192,653
C4.15(S3×Q8) = Dic67Q8φ: S3×Q8/Dic6C2 ⊆ Aut C4192C4.15(S3xQ8)192,1244
C4.16(S3×Q8) = D127Q8φ: S3×Q8/Dic6C2 ⊆ Aut C496C4.16(S3xQ8)192,1249
C4.17(S3×Q8) = Dic68Q8φ: S3×Q8/Dic6C2 ⊆ Aut C4192C4.17(S3xQ8)192,1280
C4.18(S3×Q8) = Dic69Q8φ: S3×Q8/Dic6C2 ⊆ Aut C4192C4.18(S3xQ8)192,1281
C4.19(S3×Q8) = D129Q8φ: S3×Q8/Dic6C2 ⊆ Aut C496C4.19(S3xQ8)192,1289
C4.20(S3×Q8) = C245Q8φ: S3×Q8/C4×S3C2 ⊆ Aut C4192C4.20(S3xQ8)192,414
C4.21(S3×Q8) = C243Q8φ: S3×Q8/C4×S3C2 ⊆ Aut C4192C4.21(S3xQ8)192,415
C4.22(S3×Q8) = C8.8Dic6φ: S3×Q8/C4×S3C2 ⊆ Aut C4192C4.22(S3xQ8)192,417
C4.23(S3×Q8) = S3×C4.Q8φ: S3×Q8/C4×S3C2 ⊆ Aut C496C4.23(S3xQ8)192,418
C4.24(S3×Q8) = (S3×C8)⋊C4φ: S3×Q8/C4×S3C2 ⊆ Aut C496C4.24(S3xQ8)192,419
C4.25(S3×Q8) = C8⋊(C4×S3)φ: S3×Q8/C4×S3C2 ⊆ Aut C496C4.25(S3xQ8)192,420
C4.26(S3×Q8) = C242Q8φ: S3×Q8/C4×S3C2 ⊆ Aut C4192C4.26(S3xQ8)192,433
C4.27(S3×Q8) = C244Q8φ: S3×Q8/C4×S3C2 ⊆ Aut C4192C4.27(S3xQ8)192,435
C4.28(S3×Q8) = C8.6Dic6φ: S3×Q8/C4×S3C2 ⊆ Aut C4192C4.28(S3xQ8)192,437
C4.29(S3×Q8) = S3×C2.D8φ: S3×Q8/C4×S3C2 ⊆ Aut C496C4.29(S3xQ8)192,438
C4.30(S3×Q8) = C8.27(C4×S3)φ: S3×Q8/C4×S3C2 ⊆ Aut C496C4.30(S3xQ8)192,439
C4.31(S3×Q8) = C8⋊S3⋊C4φ: S3×Q8/C4×S3C2 ⊆ Aut C496C4.31(S3xQ8)192,440
C4.32(S3×Q8) = C42.68D6φ: S3×Q8/C4×S3C2 ⊆ Aut C4192C4.32(S3xQ8)192,623
C4.33(S3×Q8) = C42.215D6φ: S3×Q8/C4×S3C2 ⊆ Aut C4192C4.33(S3xQ8)192,624
C4.34(S3×Q8) = C12.17D8φ: S3×Q8/C4×S3C2 ⊆ Aut C4192C4.34(S3xQ8)192,637
C4.35(S3×Q8) = C12.SD16φ: S3×Q8/C4×S3C2 ⊆ Aut C4192C4.35(S3xQ8)192,639
C4.36(S3×Q8) = C42.76D6φ: S3×Q8/C4×S3C2 ⊆ Aut C4192C4.36(S3xQ8)192,640
C4.37(S3×Q8) = S3×C42.C2φ: S3×Q8/C4×S3C2 ⊆ Aut C496C4.37(S3xQ8)192,1246
C4.38(S3×Q8) = C42.236D6φ: S3×Q8/C4×S3C2 ⊆ Aut C496C4.38(S3xQ8)192,1247
C4.39(S3×Q8) = C42.148D6φ: S3×Q8/C4×S3C2 ⊆ Aut C496C4.39(S3xQ8)192,1248
C4.40(S3×Q8) = C42.241D6φ: S3×Q8/C4×S3C2 ⊆ Aut C496C4.40(S3xQ8)192,1287
C4.41(S3×Q8) = C42.174D6φ: S3×Q8/C4×S3C2 ⊆ Aut C496C4.41(S3xQ8)192,1288
C4.42(S3×Q8) = Dic6.3Q8φ: S3×Q8/C3×Q8C2 ⊆ Aut C4192C4.42(S3xQ8)192,388
C4.43(S3×Q8) = D123Q8φ: S3×Q8/C3×Q8C2 ⊆ Aut C496C4.43(S3xQ8)192,401
C4.44(S3×Q8) = D124Q8φ: S3×Q8/C3×Q8C2 ⊆ Aut C496C4.44(S3xQ8)192,405
C4.45(S3×Q8) = D12.3Q8φ: S3×Q8/C3×Q8C2 ⊆ Aut C496C4.45(S3xQ8)192,406
C4.46(S3×Q8) = Dic63Q8φ: S3×Q8/C3×Q8C2 ⊆ Aut C4192C4.46(S3xQ8)192,409
C4.47(S3×Q8) = Dic64Q8φ: S3×Q8/C3×Q8C2 ⊆ Aut C4192C4.47(S3xQ8)192,410
C4.48(S3×Q8) = Q8×Dic6φ: S3×Q8/C3×Q8C2 ⊆ Aut C4192C4.48(S3xQ8)192,1125
C4.49(S3×Q8) = Dic610Q8φ: S3×Q8/C3×Q8C2 ⊆ Aut C4192C4.49(S3xQ8)192,1126
C4.50(S3×Q8) = D1210Q8φ: S3×Q8/C3×Q8C2 ⊆ Aut C496C4.50(S3xQ8)192,1138
C4.51(S3×Q8) = C42.27D6central extension (φ=1)192C4.51(S3xQ8)192,387
C4.52(S3×Q8) = Dic6⋊C8central extension (φ=1)192C4.52(S3xQ8)192,389
C4.53(S3×Q8) = C42.198D6central extension (φ=1)192C4.53(S3xQ8)192,390
C4.54(S3×Q8) = S3×C4⋊C8central extension (φ=1)96C4.54(S3xQ8)192,391
C4.55(S3×Q8) = C12⋊M4(2)central extension (φ=1)96C4.55(S3xQ8)192,396
C4.56(S3×Q8) = C42.30D6central extension (φ=1)96C4.56(S3xQ8)192,398
C4.57(S3×Q8) = Q8×C3⋊C8central extension (φ=1)192C4.57(S3xQ8)192,582
C4.58(S3×Q8) = C42.210D6central extension (φ=1)192C4.58(S3xQ8)192,583
C4.59(S3×Q8) = C42.232D6central extension (φ=1)96C4.59(S3xQ8)192,1137

׿
×
𝔽