extension | φ:Q→Aut N | d | ρ | Label | ID |
C4.1(S3×Q8) = Dic6⋊Q8 | φ: S3×Q8/Dic6 → C2 ⊆ Aut C4 | 192 | | C4.1(S3xQ8) | 192,413 |
C4.2(S3×Q8) = Dic6.Q8 | φ: S3×Q8/Dic6 → C2 ⊆ Aut C4 | 192 | | C4.2(S3xQ8) | 192,416 |
C4.3(S3×Q8) = D12⋊Q8 | φ: S3×Q8/Dic6 → C2 ⊆ Aut C4 | 96 | | C4.3(S3xQ8) | 192,429 |
C4.4(S3×Q8) = D12.Q8 | φ: S3×Q8/Dic6 → C2 ⊆ Aut C4 | 96 | | C4.4(S3xQ8) | 192,430 |
C4.5(S3×Q8) = Dic3.Q16 | φ: S3×Q8/Dic6 → C2 ⊆ Aut C4 | 192 | | C4.5(S3xQ8) | 192,434 |
C4.6(S3×Q8) = Dic6.2Q8 | φ: S3×Q8/Dic6 → C2 ⊆ Aut C4 | 192 | | C4.6(S3xQ8) | 192,436 |
C4.7(S3×Q8) = D12⋊2Q8 | φ: S3×Q8/Dic6 → C2 ⊆ Aut C4 | 96 | | C4.7(S3xQ8) | 192,449 |
C4.8(S3×Q8) = D12.2Q8 | φ: S3×Q8/Dic6 → C2 ⊆ Aut C4 | 96 | | C4.8(S3xQ8) | 192,450 |
C4.9(S3×Q8) = Dic6.4Q8 | φ: S3×Q8/Dic6 → C2 ⊆ Aut C4 | 192 | | C4.9(S3xQ8) | 192,622 |
C4.10(S3×Q8) = D12.4Q8 | φ: S3×Q8/Dic6 → C2 ⊆ Aut C4 | 96 | | C4.10(S3xQ8) | 192,625 |
C4.11(S3×Q8) = D12⋊5Q8 | φ: S3×Q8/Dic6 → C2 ⊆ Aut C4 | 96 | | C4.11(S3xQ8) | 192,643 |
C4.12(S3×Q8) = D12⋊6Q8 | φ: S3×Q8/Dic6 → C2 ⊆ Aut C4 | 96 | | C4.12(S3xQ8) | 192,646 |
C4.13(S3×Q8) = Dic6⋊5Q8 | φ: S3×Q8/Dic6 → C2 ⊆ Aut C4 | 192 | | C4.13(S3xQ8) | 192,650 |
C4.14(S3×Q8) = Dic6⋊6Q8 | φ: S3×Q8/Dic6 → C2 ⊆ Aut C4 | 192 | | C4.14(S3xQ8) | 192,653 |
C4.15(S3×Q8) = Dic6⋊7Q8 | φ: S3×Q8/Dic6 → C2 ⊆ Aut C4 | 192 | | C4.15(S3xQ8) | 192,1244 |
C4.16(S3×Q8) = D12⋊7Q8 | φ: S3×Q8/Dic6 → C2 ⊆ Aut C4 | 96 | | C4.16(S3xQ8) | 192,1249 |
C4.17(S3×Q8) = Dic6⋊8Q8 | φ: S3×Q8/Dic6 → C2 ⊆ Aut C4 | 192 | | C4.17(S3xQ8) | 192,1280 |
C4.18(S3×Q8) = Dic6⋊9Q8 | φ: S3×Q8/Dic6 → C2 ⊆ Aut C4 | 192 | | C4.18(S3xQ8) | 192,1281 |
C4.19(S3×Q8) = D12⋊9Q8 | φ: S3×Q8/Dic6 → C2 ⊆ Aut C4 | 96 | | C4.19(S3xQ8) | 192,1289 |
C4.20(S3×Q8) = C24⋊5Q8 | φ: S3×Q8/C4×S3 → C2 ⊆ Aut C4 | 192 | | C4.20(S3xQ8) | 192,414 |
C4.21(S3×Q8) = C24⋊3Q8 | φ: S3×Q8/C4×S3 → C2 ⊆ Aut C4 | 192 | | C4.21(S3xQ8) | 192,415 |
C4.22(S3×Q8) = C8.8Dic6 | φ: S3×Q8/C4×S3 → C2 ⊆ Aut C4 | 192 | | C4.22(S3xQ8) | 192,417 |
C4.23(S3×Q8) = S3×C4.Q8 | φ: S3×Q8/C4×S3 → C2 ⊆ Aut C4 | 96 | | C4.23(S3xQ8) | 192,418 |
C4.24(S3×Q8) = (S3×C8)⋊C4 | φ: S3×Q8/C4×S3 → C2 ⊆ Aut C4 | 96 | | C4.24(S3xQ8) | 192,419 |
C4.25(S3×Q8) = C8⋊(C4×S3) | φ: S3×Q8/C4×S3 → C2 ⊆ Aut C4 | 96 | | C4.25(S3xQ8) | 192,420 |
C4.26(S3×Q8) = C24⋊2Q8 | φ: S3×Q8/C4×S3 → C2 ⊆ Aut C4 | 192 | | C4.26(S3xQ8) | 192,433 |
C4.27(S3×Q8) = C24⋊4Q8 | φ: S3×Q8/C4×S3 → C2 ⊆ Aut C4 | 192 | | C4.27(S3xQ8) | 192,435 |
C4.28(S3×Q8) = C8.6Dic6 | φ: S3×Q8/C4×S3 → C2 ⊆ Aut C4 | 192 | | C4.28(S3xQ8) | 192,437 |
C4.29(S3×Q8) = S3×C2.D8 | φ: S3×Q8/C4×S3 → C2 ⊆ Aut C4 | 96 | | C4.29(S3xQ8) | 192,438 |
C4.30(S3×Q8) = C8.27(C4×S3) | φ: S3×Q8/C4×S3 → C2 ⊆ Aut C4 | 96 | | C4.30(S3xQ8) | 192,439 |
C4.31(S3×Q8) = C8⋊S3⋊C4 | φ: S3×Q8/C4×S3 → C2 ⊆ Aut C4 | 96 | | C4.31(S3xQ8) | 192,440 |
C4.32(S3×Q8) = C42.68D6 | φ: S3×Q8/C4×S3 → C2 ⊆ Aut C4 | 192 | | C4.32(S3xQ8) | 192,623 |
C4.33(S3×Q8) = C42.215D6 | φ: S3×Q8/C4×S3 → C2 ⊆ Aut C4 | 192 | | C4.33(S3xQ8) | 192,624 |
C4.34(S3×Q8) = C12.17D8 | φ: S3×Q8/C4×S3 → C2 ⊆ Aut C4 | 192 | | C4.34(S3xQ8) | 192,637 |
C4.35(S3×Q8) = C12.SD16 | φ: S3×Q8/C4×S3 → C2 ⊆ Aut C4 | 192 | | C4.35(S3xQ8) | 192,639 |
C4.36(S3×Q8) = C42.76D6 | φ: S3×Q8/C4×S3 → C2 ⊆ Aut C4 | 192 | | C4.36(S3xQ8) | 192,640 |
C4.37(S3×Q8) = S3×C42.C2 | φ: S3×Q8/C4×S3 → C2 ⊆ Aut C4 | 96 | | C4.37(S3xQ8) | 192,1246 |
C4.38(S3×Q8) = C42.236D6 | φ: S3×Q8/C4×S3 → C2 ⊆ Aut C4 | 96 | | C4.38(S3xQ8) | 192,1247 |
C4.39(S3×Q8) = C42.148D6 | φ: S3×Q8/C4×S3 → C2 ⊆ Aut C4 | 96 | | C4.39(S3xQ8) | 192,1248 |
C4.40(S3×Q8) = C42.241D6 | φ: S3×Q8/C4×S3 → C2 ⊆ Aut C4 | 96 | | C4.40(S3xQ8) | 192,1287 |
C4.41(S3×Q8) = C42.174D6 | φ: S3×Q8/C4×S3 → C2 ⊆ Aut C4 | 96 | | C4.41(S3xQ8) | 192,1288 |
C4.42(S3×Q8) = Dic6.3Q8 | φ: S3×Q8/C3×Q8 → C2 ⊆ Aut C4 | 192 | | C4.42(S3xQ8) | 192,388 |
C4.43(S3×Q8) = D12⋊3Q8 | φ: S3×Q8/C3×Q8 → C2 ⊆ Aut C4 | 96 | | C4.43(S3xQ8) | 192,401 |
C4.44(S3×Q8) = D12⋊4Q8 | φ: S3×Q8/C3×Q8 → C2 ⊆ Aut C4 | 96 | | C4.44(S3xQ8) | 192,405 |
C4.45(S3×Q8) = D12.3Q8 | φ: S3×Q8/C3×Q8 → C2 ⊆ Aut C4 | 96 | | C4.45(S3xQ8) | 192,406 |
C4.46(S3×Q8) = Dic6⋊3Q8 | φ: S3×Q8/C3×Q8 → C2 ⊆ Aut C4 | 192 | | C4.46(S3xQ8) | 192,409 |
C4.47(S3×Q8) = Dic6⋊4Q8 | φ: S3×Q8/C3×Q8 → C2 ⊆ Aut C4 | 192 | | C4.47(S3xQ8) | 192,410 |
C4.48(S3×Q8) = Q8×Dic6 | φ: S3×Q8/C3×Q8 → C2 ⊆ Aut C4 | 192 | | C4.48(S3xQ8) | 192,1125 |
C4.49(S3×Q8) = Dic6⋊10Q8 | φ: S3×Q8/C3×Q8 → C2 ⊆ Aut C4 | 192 | | C4.49(S3xQ8) | 192,1126 |
C4.50(S3×Q8) = D12⋊10Q8 | φ: S3×Q8/C3×Q8 → C2 ⊆ Aut C4 | 96 | | C4.50(S3xQ8) | 192,1138 |
C4.51(S3×Q8) = C42.27D6 | central extension (φ=1) | 192 | | C4.51(S3xQ8) | 192,387 |
C4.52(S3×Q8) = Dic6⋊C8 | central extension (φ=1) | 192 | | C4.52(S3xQ8) | 192,389 |
C4.53(S3×Q8) = C42.198D6 | central extension (φ=1) | 192 | | C4.53(S3xQ8) | 192,390 |
C4.54(S3×Q8) = S3×C4⋊C8 | central extension (φ=1) | 96 | | C4.54(S3xQ8) | 192,391 |
C4.55(S3×Q8) = C12⋊M4(2) | central extension (φ=1) | 96 | | C4.55(S3xQ8) | 192,396 |
C4.56(S3×Q8) = C42.30D6 | central extension (φ=1) | 96 | | C4.56(S3xQ8) | 192,398 |
C4.57(S3×Q8) = Q8×C3⋊C8 | central extension (φ=1) | 192 | | C4.57(S3xQ8) | 192,582 |
C4.58(S3×Q8) = C42.210D6 | central extension (φ=1) | 192 | | C4.58(S3xQ8) | 192,583 |
C4.59(S3×Q8) = C42.232D6 | central extension (φ=1) | 96 | | C4.59(S3xQ8) | 192,1137 |