Extensions 1→N→G→Q→1 with N=D4 and Q=C4xS3

Direct product G=NxQ with N=D4 and Q=C4xS3
dρLabelID
C4xS3xD448C4xS3xD4192,1103

Semidirect products G=N:Q with N=D4 and Q=C4xS3
extensionφ:Q→Out NdρLabelID
D4:1(C4xS3) = Dic3:4D8φ: C4xS3/Dic3C2 ⊆ Out D496D4:1(C4xS3)192,315
D4:2(C4xS3) = D4:S3:C4φ: C4xS3/Dic3C2 ⊆ Out D496D4:2(C4xS3)192,344
D4:3(C4xS3) = C4xD4:S3φ: C4xS3/C12C2 ⊆ Out D496D4:3(C4xS3)192,572
D4:4(C4xS3) = C42.48D6φ: C4xS3/C12C2 ⊆ Out D496D4:4(C4xS3)192,573
D4:5(C4xS3) = S3xD4:C4φ: C4xS3/D6C2 ⊆ Out D448D4:5(C4xS3)192,328
D4:6(C4xS3) = D4:(C4xS3)φ: C4xS3/D6C2 ⊆ Out D496D4:6(C4xS3)192,330
D4:7(C4xS3) = S3xC4wrC2φ: C4xS3/D6C2 ⊆ Out D4244D4:7(C4xS3)192,379
D4:8(C4xS3) = C4xD4:2S3φ: trivial image96D4:8(C4xS3)192,1095
D4:9(C4xS3) = C42:13D6φ: trivial image48D4:9(C4xS3)192,1104
D4:10(C4xS3) = C42.108D6φ: trivial image96D4:10(C4xS3)192,1105

Non-split extensions G=N.Q with N=D4 and Q=C4xS3
extensionφ:Q→Out NdρLabelID
D4.1(C4xS3) = D4.S3:C4φ: C4xS3/Dic3C2 ⊆ Out D496D4.1(C4xS3)192,316
D4.2(C4xS3) = Dic3:6SD16φ: C4xS3/Dic3C2 ⊆ Out D496D4.2(C4xS3)192,317
D4.3(C4xS3) = M4(2).22D6φ: C4xS3/Dic3C2 ⊆ Out D4484D4.3(C4xS3)192,382
D4.4(C4xS3) = C42.196D6φ: C4xS3/Dic3C2 ⊆ Out D4484D4.4(C4xS3)192,383
D4.5(C4xS3) = C4xD4.S3φ: C4xS3/C12C2 ⊆ Out D496D4.5(C4xS3)192,576
D4.6(C4xS3) = C42.51D6φ: C4xS3/C12C2 ⊆ Out D496D4.6(C4xS3)192,577
D4.7(C4xS3) = C24.100D4φ: C4xS3/C12C2 ⊆ Out D4484D4.7(C4xS3)192,703
D4.8(C4xS3) = C24.54D4φ: C4xS3/C12C2 ⊆ Out D4484D4.8(C4xS3)192,704
D4.9(C4xS3) = C4:C4:19D6φ: C4xS3/D6C2 ⊆ Out D448D4.9(C4xS3)192,329
D4.10(C4xS3) = D4:2S3:C4φ: C4xS3/D6C2 ⊆ Out D496D4.10(C4xS3)192,331
D4.11(C4xS3) = C42:3D6φ: C4xS3/D6C2 ⊆ Out D4484D4.11(C4xS3)192,380
D4.12(C4xS3) = S3xC8oD4φ: trivial image484D4.12(C4xS3)192,1308
D4.13(C4xS3) = M4(2):28D6φ: trivial image484D4.13(C4xS3)192,1309

׿
x
:
Z
F
o
wr
Q
<