Copied to
clipboard

G = Dic36SD16order 192 = 26·3

1st semidirect product of Dic3 and SD16 acting through Inn(Dic3)

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: Dic36SD16, C32(C4×SD16), D4.S32C4, D4.2(C4×S3), C6.32(C4×D4), C4⋊C4.130D6, Dic62(C2×C4), (C2×C8).198D6, C2.1(S3×SD16), (C8×Dic3)⋊18C2, D4⋊C4.9S3, (C2×D4).125D6, C6.20(C4○D8), C12.3(C22×C4), C12.Q81C2, (D4×Dic3).2C2, C6.18(C2×SD16), C22.67(S3×D4), Dic6⋊C42C2, C2.1(D83S3), C2.Dic1220C2, (C6×D4).19C22, C12.144(C4○D4), C4.45(D42S3), (C2×C12).198C23, (C2×C24).220C22, (C2×Dic3).200D4, C4⋊Dic3.58C22, (C2×Dic6).50C22, C2.16(Dic34D4), (C4×Dic3).221C22, C4.3(S3×C2×C4), C3⋊C812(C2×C4), (C3×D4).2(C2×C4), (C2×C6).211(C2×D4), (C3×C4⋊C4).3C22, (C2×D4.S3).2C2, (C2×C3⋊C8).208C22, (C3×D4⋊C4).11C2, (C2×C4).305(C22×S3), SmallGroup(192,317)

Series: Derived Chief Lower central Upper central

C1C12 — Dic36SD16
C1C3C6C12C2×C12C4×Dic3D4×Dic3 — Dic36SD16
C3C6C12 — Dic36SD16
C1C22C2×C4D4⋊C4

Generators and relations for Dic36SD16
 G = < a,b,c,d | a6=c8=d2=1, b2=a3, bab-1=cac-1=a-1, ad=da, bc=cb, bd=db, dcd=c3 >

Subgroups: 312 in 122 conjugacy classes, 51 normal (37 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C6, C6, C8, C2×C4, C2×C4, D4, D4, Q8, C23, Dic3, Dic3, C12, C12, C2×C6, C2×C6, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, SD16, C22×C4, C2×D4, C2×Q8, C3⋊C8, C24, Dic6, Dic6, C2×Dic3, C2×Dic3, C2×C12, C2×C12, C3×D4, C3×D4, C22×C6, C4×C8, D4⋊C4, Q8⋊C4, C4.Q8, C4×D4, C4×Q8, C2×SD16, C2×C3⋊C8, C4×Dic3, C4×Dic3, Dic3⋊C4, C4⋊Dic3, D4.S3, C6.D4, C3×C4⋊C4, C2×C24, C2×Dic6, C22×Dic3, C6×D4, C4×SD16, C12.Q8, C8×Dic3, C2.Dic12, C3×D4⋊C4, Dic6⋊C4, C2×D4.S3, D4×Dic3, Dic36SD16
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, C23, D6, SD16, C22×C4, C2×D4, C4○D4, C4×S3, C22×S3, C4×D4, C2×SD16, C4○D8, S3×C2×C4, S3×D4, D42S3, C4×SD16, Dic34D4, D83S3, S3×SD16, Dic36SD16

Smallest permutation representation of Dic36SD16
On 96 points
Generators in S96
(1 88 51 16 41 78)(2 79 42 9 52 81)(3 82 53 10 43 80)(4 73 44 11 54 83)(5 84 55 12 45 74)(6 75 46 13 56 85)(7 86 49 14 47 76)(8 77 48 15 50 87)(17 89 35 59 32 71)(18 72 25 60 36 90)(19 91 37 61 26 65)(20 66 27 62 38 92)(21 93 39 63 28 67)(22 68 29 64 40 94)(23 95 33 57 30 69)(24 70 31 58 34 96)
(1 64 16 22)(2 57 9 23)(3 58 10 24)(4 59 11 17)(5 60 12 18)(6 61 13 19)(7 62 14 20)(8 63 15 21)(25 45 90 84)(26 46 91 85)(27 47 92 86)(28 48 93 87)(29 41 94 88)(30 42 95 81)(31 43 96 82)(32 44 89 83)(33 52 69 79)(34 53 70 80)(35 54 71 73)(36 55 72 74)(37 56 65 75)(38 49 66 76)(39 50 67 77)(40 51 68 78)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)
(2 4)(3 7)(6 8)(9 11)(10 14)(13 15)(17 23)(19 21)(20 24)(26 28)(27 31)(30 32)(33 35)(34 38)(37 39)(42 44)(43 47)(46 48)(49 53)(50 56)(52 54)(57 59)(58 62)(61 63)(65 67)(66 70)(69 71)(73 79)(75 77)(76 80)(81 83)(82 86)(85 87)(89 95)(91 93)(92 96)

G:=sub<Sym(96)| (1,88,51,16,41,78)(2,79,42,9,52,81)(3,82,53,10,43,80)(4,73,44,11,54,83)(5,84,55,12,45,74)(6,75,46,13,56,85)(7,86,49,14,47,76)(8,77,48,15,50,87)(17,89,35,59,32,71)(18,72,25,60,36,90)(19,91,37,61,26,65)(20,66,27,62,38,92)(21,93,39,63,28,67)(22,68,29,64,40,94)(23,95,33,57,30,69)(24,70,31,58,34,96), (1,64,16,22)(2,57,9,23)(3,58,10,24)(4,59,11,17)(5,60,12,18)(6,61,13,19)(7,62,14,20)(8,63,15,21)(25,45,90,84)(26,46,91,85)(27,47,92,86)(28,48,93,87)(29,41,94,88)(30,42,95,81)(31,43,96,82)(32,44,89,83)(33,52,69,79)(34,53,70,80)(35,54,71,73)(36,55,72,74)(37,56,65,75)(38,49,66,76)(39,50,67,77)(40,51,68,78), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (2,4)(3,7)(6,8)(9,11)(10,14)(13,15)(17,23)(19,21)(20,24)(26,28)(27,31)(30,32)(33,35)(34,38)(37,39)(42,44)(43,47)(46,48)(49,53)(50,56)(52,54)(57,59)(58,62)(61,63)(65,67)(66,70)(69,71)(73,79)(75,77)(76,80)(81,83)(82,86)(85,87)(89,95)(91,93)(92,96)>;

G:=Group( (1,88,51,16,41,78)(2,79,42,9,52,81)(3,82,53,10,43,80)(4,73,44,11,54,83)(5,84,55,12,45,74)(6,75,46,13,56,85)(7,86,49,14,47,76)(8,77,48,15,50,87)(17,89,35,59,32,71)(18,72,25,60,36,90)(19,91,37,61,26,65)(20,66,27,62,38,92)(21,93,39,63,28,67)(22,68,29,64,40,94)(23,95,33,57,30,69)(24,70,31,58,34,96), (1,64,16,22)(2,57,9,23)(3,58,10,24)(4,59,11,17)(5,60,12,18)(6,61,13,19)(7,62,14,20)(8,63,15,21)(25,45,90,84)(26,46,91,85)(27,47,92,86)(28,48,93,87)(29,41,94,88)(30,42,95,81)(31,43,96,82)(32,44,89,83)(33,52,69,79)(34,53,70,80)(35,54,71,73)(36,55,72,74)(37,56,65,75)(38,49,66,76)(39,50,67,77)(40,51,68,78), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (2,4)(3,7)(6,8)(9,11)(10,14)(13,15)(17,23)(19,21)(20,24)(26,28)(27,31)(30,32)(33,35)(34,38)(37,39)(42,44)(43,47)(46,48)(49,53)(50,56)(52,54)(57,59)(58,62)(61,63)(65,67)(66,70)(69,71)(73,79)(75,77)(76,80)(81,83)(82,86)(85,87)(89,95)(91,93)(92,96) );

G=PermutationGroup([[(1,88,51,16,41,78),(2,79,42,9,52,81),(3,82,53,10,43,80),(4,73,44,11,54,83),(5,84,55,12,45,74),(6,75,46,13,56,85),(7,86,49,14,47,76),(8,77,48,15,50,87),(17,89,35,59,32,71),(18,72,25,60,36,90),(19,91,37,61,26,65),(20,66,27,62,38,92),(21,93,39,63,28,67),(22,68,29,64,40,94),(23,95,33,57,30,69),(24,70,31,58,34,96)], [(1,64,16,22),(2,57,9,23),(3,58,10,24),(4,59,11,17),(5,60,12,18),(6,61,13,19),(7,62,14,20),(8,63,15,21),(25,45,90,84),(26,46,91,85),(27,47,92,86),(28,48,93,87),(29,41,94,88),(30,42,95,81),(31,43,96,82),(32,44,89,83),(33,52,69,79),(34,53,70,80),(35,54,71,73),(36,55,72,74),(37,56,65,75),(38,49,66,76),(39,50,67,77),(40,51,68,78)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96)], [(2,4),(3,7),(6,8),(9,11),(10,14),(13,15),(17,23),(19,21),(20,24),(26,28),(27,31),(30,32),(33,35),(34,38),(37,39),(42,44),(43,47),(46,48),(49,53),(50,56),(52,54),(57,59),(58,62),(61,63),(65,67),(66,70),(69,71),(73,79),(75,77),(76,80),(81,83),(82,86),(85,87),(89,95),(91,93),(92,96)]])

42 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E4F4G4H4I4J4K4L4M4N6A6B6C6D6E8A8B8C8D8E8F8G8H12A12B12C12D24A24B24C24D
order12222234444444444444466666888888881212121224242424
size1111442223333446612121212222882222666644884444

42 irreducible representations

dim1111111112222222224444
type+++++++++++++-+-
imageC1C2C2C2C2C2C2C2C4S3D4D6D6D6SD16C4○D4C4×S3C4○D8D42S3S3×D4D83S3S3×SD16
kernelDic36SD16C12.Q8C8×Dic3C2.Dic12C3×D4⋊C4Dic6⋊C4C2×D4.S3D4×Dic3D4.S3D4⋊C4C2×Dic3C4⋊C4C2×C8C2×D4Dic3C12D4C6C4C22C2C2
# reps1111111181211142441122

Matrix representation of Dic36SD16 in GL4(𝔽73) generated by

17200
1000
00720
00072
,
54500
591900
00270
00027
,
21100
137100
001261
0060
,
1000
0100
0010
00172
G:=sub<GL(4,GF(73))| [1,1,0,0,72,0,0,0,0,0,72,0,0,0,0,72],[54,59,0,0,5,19,0,0,0,0,27,0,0,0,0,27],[2,13,0,0,11,71,0,0,0,0,12,6,0,0,61,0],[1,0,0,0,0,1,0,0,0,0,1,1,0,0,0,72] >;

Dic36SD16 in GAP, Magma, Sage, TeX

{\rm Dic}_3\rtimes_6{\rm SD}_{16}
% in TeX

G:=Group("Dic3:6SD16");
// GroupNames label

G:=SmallGroup(192,317);
// by ID

G=gap.SmallGroup(192,317);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,112,135,268,570,297,136,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^6=c^8=d^2=1,b^2=a^3,b*a*b^-1=c*a*c^-1=a^-1,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^3>;
// generators/relations

׿
×
𝔽