Copied to
clipboard

G = D4.S3:C4order 192 = 26·3

1st semidirect product of D4.S3 and C4 acting via C4/C2=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D4.S3:1C4, D4.1(C4xS3), C6.31(C4xD4), C4:C4.129D6, Dic6:1(C2xC4), C24:C4:15C2, C6.Q16:2C2, (C2xC8).165D6, D4:C4.7S3, (C2xD4).124D6, C2.1(D8:S3), C12.2(C22xC4), (D4xDic3).1C2, C22.66(S3xD4), Dic6:C4:1C2, C3:2(SD16:C4), C6.24(C8:C22), C2.Dic12:19C2, C2.1(D4.D6), (C6xD4).18C22, C12.143(C4oD4), C4.44(D4:2S3), (C2xC12).197C23, (C2xC24).219C22, (C2xDic3).133D4, C6.24(C8.C22), C4:Dic3.57C22, (C4xDic3).3C22, (C2xDic6).49C22, C2.15(Dic3:4D4), C3:C8:1(C2xC4), C4.2(S3xC2xC4), (C3xD4).1(C2xC4), (C2xC3:C8).5C22, (C2xC6).210(C2xD4), (C3xC4:C4).2C22, (C2xD4.S3).1C2, (C3xD4:C4).10C2, (C2xC4).304(C22xS3), SmallGroup(192,316)

Series: Derived Chief Lower central Upper central

C1C12 — D4.S3:C4
C1C3C6C12C2xC12C4xDic3D4xDic3 — D4.S3:C4
C3C6C12 — D4.S3:C4
C1C22C2xC4D4:C4

Generators and relations for D4.S3:C4
 G = < a,b,c,d,e | a4=b2=c3=e4=1, d2=a2, bab=dad-1=eae-1=a-1, ac=ca, bc=cb, dbd-1=ebe-1=ab, dcd-1=c-1, ce=ec, ede-1=a2d >

Subgroups: 312 in 120 conjugacy classes, 49 normal (37 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C6, C6, C8, C2xC4, C2xC4, D4, D4, Q8, C23, Dic3, C12, C12, C2xC6, C2xC6, C42, C22:C4, C4:C4, C4:C4, C2xC8, C2xC8, SD16, C22xC4, C2xD4, C2xQ8, C3:C8, C24, Dic6, Dic6, C2xDic3, C2xDic3, C2xC12, C2xC12, C3xD4, C3xD4, C22xC6, C8:C4, D4:C4, Q8:C4, C2.D8, C4xD4, C4xQ8, C2xSD16, C2xC3:C8, C4xDic3, C4xDic3, Dic3:C4, C4:Dic3, D4.S3, C6.D4, C3xC4:C4, C2xC24, C2xDic6, C22xDic3, C6xD4, SD16:C4, C6.Q16, C24:C4, C2.Dic12, C3xD4:C4, Dic6:C4, C2xD4.S3, D4xDic3, D4.S3:C4
Quotients: C1, C2, C4, C22, S3, C2xC4, D4, C23, D6, C22xC4, C2xD4, C4oD4, C4xS3, C22xS3, C4xD4, C8:C22, C8.C22, S3xC2xC4, S3xD4, D4:2S3, SD16:C4, Dic3:4D4, D8:S3, D4.D6, D4.S3:C4

Smallest permutation representation of D4.S3:C4
On 96 points
Generators in S96
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)
(1 4)(2 3)(5 6)(7 8)(9 10)(11 12)(14 16)(17 20)(18 19)(21 24)(22 23)(25 28)(26 27)(29 31)(33 35)(38 40)(41 43)(45 47)(50 52)(53 54)(55 56)(57 58)(59 60)(61 64)(62 63)(65 68)(66 67)(69 72)(70 71)(73 76)(74 75)(77 79)(81 83)(86 88)(89 91)(93 95)
(1 6 17)(2 7 18)(3 8 19)(4 5 20)(9 28 22)(10 25 23)(11 26 24)(12 27 21)(13 90 94)(14 91 95)(15 92 96)(16 89 93)(29 38 35)(30 39 36)(31 40 33)(32 37 34)(41 52 45)(42 49 46)(43 50 47)(44 51 48)(53 70 76)(54 71 73)(55 72 74)(56 69 75)(57 68 62)(58 65 63)(59 66 64)(60 67 61)(77 83 86)(78 84 87)(79 81 88)(80 82 85)
(1 91 3 89)(2 90 4 92)(5 15 7 13)(6 14 8 16)(9 82 11 84)(10 81 12 83)(17 95 19 93)(18 94 20 96)(21 86 23 88)(22 85 24 87)(25 79 27 77)(26 78 28 80)(29 61 31 63)(30 64 32 62)(33 58 35 60)(34 57 36 59)(37 68 39 66)(38 67 40 65)(41 56 43 54)(42 55 44 53)(45 69 47 71)(46 72 48 70)(49 74 51 76)(50 73 52 75)
(1 41 10 35)(2 44 11 34)(3 43 12 33)(4 42 9 36)(5 49 28 30)(6 52 25 29)(7 51 26 32)(8 50 27 31)(13 74 78 64)(14 73 79 63)(15 76 80 62)(16 75 77 61)(17 45 23 38)(18 48 24 37)(19 47 21 40)(20 46 22 39)(53 82 57 92)(54 81 58 91)(55 84 59 90)(56 83 60 89)(65 95 71 88)(66 94 72 87)(67 93 69 86)(68 96 70 85)

G:=sub<Sym(96)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96), (1,4)(2,3)(5,6)(7,8)(9,10)(11,12)(14,16)(17,20)(18,19)(21,24)(22,23)(25,28)(26,27)(29,31)(33,35)(38,40)(41,43)(45,47)(50,52)(53,54)(55,56)(57,58)(59,60)(61,64)(62,63)(65,68)(66,67)(69,72)(70,71)(73,76)(74,75)(77,79)(81,83)(86,88)(89,91)(93,95), (1,6,17)(2,7,18)(3,8,19)(4,5,20)(9,28,22)(10,25,23)(11,26,24)(12,27,21)(13,90,94)(14,91,95)(15,92,96)(16,89,93)(29,38,35)(30,39,36)(31,40,33)(32,37,34)(41,52,45)(42,49,46)(43,50,47)(44,51,48)(53,70,76)(54,71,73)(55,72,74)(56,69,75)(57,68,62)(58,65,63)(59,66,64)(60,67,61)(77,83,86)(78,84,87)(79,81,88)(80,82,85), (1,91,3,89)(2,90,4,92)(5,15,7,13)(6,14,8,16)(9,82,11,84)(10,81,12,83)(17,95,19,93)(18,94,20,96)(21,86,23,88)(22,85,24,87)(25,79,27,77)(26,78,28,80)(29,61,31,63)(30,64,32,62)(33,58,35,60)(34,57,36,59)(37,68,39,66)(38,67,40,65)(41,56,43,54)(42,55,44,53)(45,69,47,71)(46,72,48,70)(49,74,51,76)(50,73,52,75), (1,41,10,35)(2,44,11,34)(3,43,12,33)(4,42,9,36)(5,49,28,30)(6,52,25,29)(7,51,26,32)(8,50,27,31)(13,74,78,64)(14,73,79,63)(15,76,80,62)(16,75,77,61)(17,45,23,38)(18,48,24,37)(19,47,21,40)(20,46,22,39)(53,82,57,92)(54,81,58,91)(55,84,59,90)(56,83,60,89)(65,95,71,88)(66,94,72,87)(67,93,69,86)(68,96,70,85)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96), (1,4)(2,3)(5,6)(7,8)(9,10)(11,12)(14,16)(17,20)(18,19)(21,24)(22,23)(25,28)(26,27)(29,31)(33,35)(38,40)(41,43)(45,47)(50,52)(53,54)(55,56)(57,58)(59,60)(61,64)(62,63)(65,68)(66,67)(69,72)(70,71)(73,76)(74,75)(77,79)(81,83)(86,88)(89,91)(93,95), (1,6,17)(2,7,18)(3,8,19)(4,5,20)(9,28,22)(10,25,23)(11,26,24)(12,27,21)(13,90,94)(14,91,95)(15,92,96)(16,89,93)(29,38,35)(30,39,36)(31,40,33)(32,37,34)(41,52,45)(42,49,46)(43,50,47)(44,51,48)(53,70,76)(54,71,73)(55,72,74)(56,69,75)(57,68,62)(58,65,63)(59,66,64)(60,67,61)(77,83,86)(78,84,87)(79,81,88)(80,82,85), (1,91,3,89)(2,90,4,92)(5,15,7,13)(6,14,8,16)(9,82,11,84)(10,81,12,83)(17,95,19,93)(18,94,20,96)(21,86,23,88)(22,85,24,87)(25,79,27,77)(26,78,28,80)(29,61,31,63)(30,64,32,62)(33,58,35,60)(34,57,36,59)(37,68,39,66)(38,67,40,65)(41,56,43,54)(42,55,44,53)(45,69,47,71)(46,72,48,70)(49,74,51,76)(50,73,52,75), (1,41,10,35)(2,44,11,34)(3,43,12,33)(4,42,9,36)(5,49,28,30)(6,52,25,29)(7,51,26,32)(8,50,27,31)(13,74,78,64)(14,73,79,63)(15,76,80,62)(16,75,77,61)(17,45,23,38)(18,48,24,37)(19,47,21,40)(20,46,22,39)(53,82,57,92)(54,81,58,91)(55,84,59,90)(56,83,60,89)(65,95,71,88)(66,94,72,87)(67,93,69,86)(68,96,70,85) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96)], [(1,4),(2,3),(5,6),(7,8),(9,10),(11,12),(14,16),(17,20),(18,19),(21,24),(22,23),(25,28),(26,27),(29,31),(33,35),(38,40),(41,43),(45,47),(50,52),(53,54),(55,56),(57,58),(59,60),(61,64),(62,63),(65,68),(66,67),(69,72),(70,71),(73,76),(74,75),(77,79),(81,83),(86,88),(89,91),(93,95)], [(1,6,17),(2,7,18),(3,8,19),(4,5,20),(9,28,22),(10,25,23),(11,26,24),(12,27,21),(13,90,94),(14,91,95),(15,92,96),(16,89,93),(29,38,35),(30,39,36),(31,40,33),(32,37,34),(41,52,45),(42,49,46),(43,50,47),(44,51,48),(53,70,76),(54,71,73),(55,72,74),(56,69,75),(57,68,62),(58,65,63),(59,66,64),(60,67,61),(77,83,86),(78,84,87),(79,81,88),(80,82,85)], [(1,91,3,89),(2,90,4,92),(5,15,7,13),(6,14,8,16),(9,82,11,84),(10,81,12,83),(17,95,19,93),(18,94,20,96),(21,86,23,88),(22,85,24,87),(25,79,27,77),(26,78,28,80),(29,61,31,63),(30,64,32,62),(33,58,35,60),(34,57,36,59),(37,68,39,66),(38,67,40,65),(41,56,43,54),(42,55,44,53),(45,69,47,71),(46,72,48,70),(49,74,51,76),(50,73,52,75)], [(1,41,10,35),(2,44,11,34),(3,43,12,33),(4,42,9,36),(5,49,28,30),(6,52,25,29),(7,51,26,32),(8,50,27,31),(13,74,78,64),(14,73,79,63),(15,76,80,62),(16,75,77,61),(17,45,23,38),(18,48,24,37),(19,47,21,40),(20,46,22,39),(53,82,57,92),(54,81,58,91),(55,84,59,90),(56,83,60,89),(65,95,71,88),(66,94,72,87),(67,93,69,86),(68,96,70,85)]])

36 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E4F4G4H4I4J4K4L6A6B6C6D6E8A8B8C8D12A12B12C12D24A24B24C24D
order12222234444444444446666688881212121224242424
size111144222446666121212122228844121244884444

36 irreducible representations

dim1111111112222222444444
type++++++++++++++--+-
imageC1C2C2C2C2C2C2C2C4S3D4D6D6D6C4oD4C4xS3C8:C22C8.C22D4:2S3S3xD4D8:S3D4.D6
kernelD4.S3:C4C6.Q16C24:C4C2.Dic12C3xD4:C4Dic6:C4C2xD4.S3D4xDic3D4.S3D4:C4C2xDic3C4:C4C2xC8C2xD4C12D4C6C6C4C22C2C2
# reps1111111181211124111122

Matrix representation of D4.S3:C4 in GL6(F73)

100000
010000
001020
000102
00720720
00072072
,
7200000
0720000
001020
000102
0000720
0000072
,
010000
72720000
000100
00727200
000001
00007272
,
62600000
71110000
00001424
00001059
0071200
0056600
,
2700000
0270000
00006863
0000105
00346800
0053900

G:=sub<GL(6,GF(73))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,72,0,0,0,0,1,0,72,0,0,2,0,72,0,0,0,0,2,0,72],[72,0,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,2,0,72,0,0,0,0,2,0,72],[0,72,0,0,0,0,1,72,0,0,0,0,0,0,0,72,0,0,0,0,1,72,0,0,0,0,0,0,0,72,0,0,0,0,1,72],[62,71,0,0,0,0,60,11,0,0,0,0,0,0,0,0,7,5,0,0,0,0,12,66,0,0,14,10,0,0,0,0,24,59,0,0],[27,0,0,0,0,0,0,27,0,0,0,0,0,0,0,0,34,5,0,0,0,0,68,39,0,0,68,10,0,0,0,0,63,5,0,0] >;

D4.S3:C4 in GAP, Magma, Sage, TeX

D_4.S_3\rtimes C_4
% in TeX

G:=Group("D4.S3:C4");
// GroupNames label

G:=SmallGroup(192,316);
// by ID

G=gap.SmallGroup(192,316);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,112,758,135,100,570,297,136,6278]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=b^2=c^3=e^4=1,d^2=a^2,b*a*b=d*a*d^-1=e*a*e^-1=a^-1,a*c=c*a,b*c=c*b,d*b*d^-1=e*b*e^-1=a*b,d*c*d^-1=c^-1,c*e=e*c,e*d*e^-1=a^2*d>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<