Extensions 1→N→G→Q→1 with N=C2×Dic3 and Q=C2×C4

Direct product G=N×Q with N=C2×Dic3 and Q=C2×C4
dρLabelID
Dic3×C22×C4192Dic3xC2^2xC4192,1341

Semidirect products G=N:Q with N=C2×Dic3 and Q=C2×C4
extensionφ:Q→Out NdρLabelID
(C2×Dic3)⋊1(C2×C4) = S3×C23⋊C4φ: C2×C4/C2C4 ⊆ Out C2×Dic3248+(C2xDic3):1(C2xC4)192,302
(C2×Dic3)⋊2(C2×C4) = C2×C23.6D6φ: C2×C4/C2C4 ⊆ Out C2×Dic348(C2xDic3):2(C2xC4)192,513
(C2×Dic3)⋊3(C2×C4) = D6⋊C4⋊C4φ: C2×C4/C2C22 ⊆ Out C2×Dic396(C2xDic3):3(C2xC4)192,227
(C2×Dic3)⋊4(C2×C4) = C24.57D6φ: C2×C4/C2C22 ⊆ Out C2×Dic396(C2xDic3):4(C2xC4)192,505
(C2×Dic3)⋊5(C2×C4) = C24.23D6φ: C2×C4/C2C22 ⊆ Out C2×Dic396(C2xDic3):5(C2xC4)192,515
(C2×Dic3)⋊6(C2×C4) = C24.60D6φ: C2×C4/C2C22 ⊆ Out C2×Dic396(C2xDic3):6(C2xC4)192,517
(C2×Dic3)⋊7(C2×C4) = D6⋊C46C4φ: C2×C4/C2C22 ⊆ Out C2×Dic396(C2xDic3):7(C2xC4)192,548
(C2×Dic3)⋊8(C2×C4) = C24.73D6φ: C2×C4/C2C22 ⊆ Out C2×Dic396(C2xDic3):8(C2xC4)192,769
(C2×Dic3)⋊9(C2×C4) = C24.76D6φ: C2×C4/C2C22 ⊆ Out C2×Dic396(C2xDic3):9(C2xC4)192,772
(C2×Dic3)⋊10(C2×C4) = C24.35D6φ: C2×C4/C2C22 ⊆ Out C2×Dic348(C2xDic3):10(C2xC4)192,1045
(C2×Dic3)⋊11(C2×C4) = C42.108D6φ: C2×C4/C2C22 ⊆ Out C2×Dic396(C2xDic3):11(C2xC4)192,1105
(C2×Dic3)⋊12(C2×C4) = D6⋊C42φ: C2×C4/C4C2 ⊆ Out C2×Dic396(C2xDic3):12(C2xC4)192,225
(C2×Dic3)⋊13(C2×C4) = C4×D6⋊C4φ: C2×C4/C4C2 ⊆ Out C2×Dic396(C2xDic3):13(C2xC4)192,497
(C2×Dic3)⋊14(C2×C4) = Dic3×C22⋊C4φ: C2×C4/C4C2 ⊆ Out C2×Dic396(C2xDic3):14(C2xC4)192,500
(C2×Dic3)⋊15(C2×C4) = C4×C6.D4φ: C2×C4/C4C2 ⊆ Out C2×Dic396(C2xDic3):15(C2xC4)192,768
(C2×Dic3)⋊16(C2×C4) = C2×Dic34D4φ: C2×C4/C4C2 ⊆ Out C2×Dic396(C2xDic3):16(C2xC4)192,1044
(C2×Dic3)⋊17(C2×C4) = C4×D42S3φ: C2×C4/C4C2 ⊆ Out C2×Dic396(C2xDic3):17(C2xC4)192,1095
(C2×Dic3)⋊18(C2×C4) = C2×C4×C3⋊D4φ: C2×C4/C4C2 ⊆ Out C2×Dic396(C2xDic3):18(C2xC4)192,1347
(C2×Dic3)⋊19(C2×C4) = S3×C2.C42φ: C2×C4/C22C2 ⊆ Out C2×Dic396(C2xDic3):19(C2xC4)192,222
(C2×Dic3)⋊20(C2×C4) = C2×C6.C42φ: C2×C4/C22C2 ⊆ Out C2×Dic3192(C2xDic3):20(C2xC4)192,767
(C2×Dic3)⋊21(C2×C4) = C2×C23.16D6φ: C2×C4/C22C2 ⊆ Out C2×Dic396(C2xDic3):21(C2xC4)192,1039
(C2×Dic3)⋊22(C2×C4) = C2×S3×C4⋊C4φ: C2×C4/C22C2 ⊆ Out C2×Dic396(C2xDic3):22(C2xC4)192,1060
(C2×Dic3)⋊23(C2×C4) = S3×C42⋊C2φ: C2×C4/C22C2 ⊆ Out C2×Dic348(C2xDic3):23(C2xC4)192,1079
(C2×Dic3)⋊24(C2×C4) = C22×Dic3⋊C4φ: C2×C4/C22C2 ⊆ Out C2×Dic3192(C2xDic3):24(C2xC4)192,1342
(C2×Dic3)⋊25(C2×C4) = S3×C2×C42φ: trivial image96(C2xDic3):25(C2xC4)192,1030

Non-split extensions G=N.Q with N=C2×Dic3 and Q=C2×C4
extensionφ:Q→Out NdρLabelID
(C2×Dic3).1(C2×C4) = C23⋊C45S3φ: C2×C4/C2C4 ⊆ Out C2×Dic3488-(C2xDic3).1(C2xC4)192,299
(C2×Dic3).2(C2×C4) = M4(2).19D6φ: C2×C4/C2C4 ⊆ Out C2×Dic3488-(C2xDic3).2(C2xC4)192,304
(C2×Dic3).3(C2×C4) = S3×C4.10D4φ: C2×C4/C2C4 ⊆ Out C2×Dic3488-(C2xDic3).3(C2xC4)192,309
(C2×Dic3).4(C2×C4) = (C2×D12)⋊13C4φ: C2×C4/C2C4 ⊆ Out C2×Dic3484(C2xDic3).4(C2xC4)192,565
(C2×Dic3).5(C2×C4) = M4(2).31D6φ: C2×C4/C2C4 ⊆ Out C2×Dic3484(C2xDic3).5(C2xC4)192,691
(C2×Dic3).6(C2×C4) = C2×C12.47D4φ: C2×C4/C2C4 ⊆ Out C2×Dic396(C2xDic3).6(C2xC4)192,695
(C2×Dic3).7(C2×C4) = C6.(C4×D4)φ: C2×C4/C2C22 ⊆ Out C2×Dic3192(C2xDic3).7(C2xC4)192,211
(C2×Dic3).8(C2×C4) = Dic3⋊C4⋊C4φ: C2×C4/C2C22 ⊆ Out C2×Dic3192(C2xDic3).8(C2xC4)192,214
(C2×Dic3).9(C2×C4) = D6⋊C45C4φ: C2×C4/C2C22 ⊆ Out C2×Dic396(C2xDic3).9(C2xC4)192,228
(C2×Dic3).10(C2×C4) = C2412Q8φ: C2×C4/C2C22 ⊆ Out C2×Dic3192(C2xDic3).10(C2xC4)192,238
(C2×Dic3).11(C2×C4) = C86D12φ: C2×C4/C2C22 ⊆ Out C2×Dic396(C2xDic3).11(C2xC4)192,247
(C2×Dic3).12(C2×C4) = C42.243D6φ: C2×C4/C2C22 ⊆ Out C2×Dic396(C2xDic3).12(C2xC4)192,249
(C2×Dic3).13(C2×C4) = C24⋊Q8φ: C2×C4/C2C22 ⊆ Out C2×Dic3192(C2xDic3).13(C2xC4)192,260
(C2×Dic3).14(C2×C4) = C89D12φ: C2×C4/C2C22 ⊆ Out C2×Dic396(C2xDic3).14(C2xC4)192,265
(C2×Dic3).15(C2×C4) = C42.185D6φ: C2×C4/C2C22 ⊆ Out C2×Dic396(C2xDic3).15(C2xC4)192,268
(C2×Dic3).16(C2×C4) = C24⋊C4⋊C2φ: C2×C4/C2C22 ⊆ Out C2×Dic396(C2xDic3).16(C2xC4)192,279
(C2×Dic3).17(C2×C4) = D62M4(2)φ: C2×C4/C2C22 ⊆ Out C2×Dic396(C2xDic3).17(C2xC4)192,287
(C2×Dic3).18(C2×C4) = C3⋊C826D4φ: C2×C4/C2C22 ⊆ Out C2×Dic396(C2xDic3).18(C2xC4)192,289
(C2×Dic3).19(C2×C4) = S3×C4.D4φ: C2×C4/C2C22 ⊆ Out C2×Dic3248+(C2xDic3).19(C2xC4)192,303
(C2×Dic3).20(C2×C4) = C42.27D6φ: C2×C4/C2C22 ⊆ Out C2×Dic3192(C2xDic3).20(C2xC4)192,387
(C2×Dic3).21(C2×C4) = C42.198D6φ: C2×C4/C2C22 ⊆ Out C2×Dic3192(C2xDic3).21(C2xC4)192,390
(C2×Dic3).22(C2×C4) = D63M4(2)φ: C2×C4/C2C22 ⊆ Out C2×Dic396(C2xDic3).22(C2xC4)192,395
(C2×Dic3).23(C2×C4) = C122M4(2)φ: C2×C4/C2C22 ⊆ Out C2×Dic396(C2xDic3).23(C2xC4)192,397
(C2×Dic3).24(C2×C4) = C124(C4⋊C4)φ: C2×C4/C2C22 ⊆ Out C2×Dic3192(C2xDic3).24(C2xC4)192,487
(C2×Dic3).25(C2×C4) = (C2×Dic6)⋊7C4φ: C2×C4/C2C22 ⊆ Out C2×Dic3192(C2xDic3).25(C2xC4)192,488
(C2×Dic3).26(C2×C4) = (C2×C42).6S3φ: C2×C4/C2C22 ⊆ Out C2×Dic3192(C2xDic3).26(C2xC4)192,492
(C2×Dic3).27(C2×C4) = (C2×C42)⋊3S3φ: C2×C4/C2C22 ⊆ Out C2×Dic396(C2xDic3).27(C2xC4)192,499
(C2×Dic3).28(C2×C4) = C12⋊(C4⋊C4)φ: C2×C4/C2C22 ⊆ Out C2×Dic3192(C2xDic3).28(C2xC4)192,531
(C2×Dic3).29(C2×C4) = C4.(D6⋊C4)φ: C2×C4/C2C22 ⊆ Out C2×Dic3192(C2xDic3).29(C2xC4)192,532
(C2×Dic3).30(C2×C4) = Dic3⋊C8⋊C2φ: C2×C4/C2C22 ⊆ Out C2×Dic396(C2xDic3).30(C2xC4)192,661
(C2×Dic3).31(C2×C4) = (C22×C8)⋊7S3φ: C2×C4/C2C22 ⊆ Out C2×Dic396(C2xDic3).31(C2xC4)192,669
(C2×Dic3).32(C2×C4) = C2433D4φ: C2×C4/C2C22 ⊆ Out C2×Dic396(C2xDic3).32(C2xC4)192,670
(C2×Dic3).33(C2×C4) = C12.88(C2×Q8)φ: C2×C4/C2C22 ⊆ Out C2×Dic396(C2xDic3).33(C2xC4)192,678
(C2×Dic3).34(C2×C4) = C24⋊D4φ: C2×C4/C2C22 ⊆ Out C2×Dic396(C2xDic3).34(C2xC4)192,686
(C2×Dic3).35(C2×C4) = D6⋊C840C2φ: C2×C4/C2C22 ⊆ Out C2×Dic396(C2xDic3).35(C2xC4)192,688
(C2×Dic3).36(C2×C4) = C42.87D6φ: C2×C4/C2C22 ⊆ Out C2×Dic396(C2xDic3).36(C2xC4)192,1075
(C2×Dic3).37(C2×C4) = M4(2)⋊26D6φ: C2×C4/C2C22 ⊆ Out C2×Dic3484(C2xDic3).37(C2xC4)192,1304
(C2×Dic3).38(C2×C4) = M4(2)⋊28D6φ: C2×C4/C2C22 ⊆ Out C2×Dic3484(C2xDic3).38(C2xC4)192,1309
(C2×Dic3).39(C2×C4) = (C2×C12)⋊Q8φ: C2×C4/C4C2 ⊆ Out C2×Dic3192(C2xDic3).39(C2xC4)192,205
(C2×Dic3).40(C2×C4) = C6.(C4×Q8)φ: C2×C4/C4C2 ⊆ Out C2×Dic3192(C2xDic3).40(C2xC4)192,206
(C2×Dic3).41(C2×C4) = Dic3⋊C42φ: C2×C4/C4C2 ⊆ Out C2×Dic3192(C2xDic3).41(C2xC4)192,208
(C2×Dic3).42(C2×C4) = C2.(C4×D12)φ: C2×C4/C4C2 ⊆ Out C2×Dic3192(C2xDic3).42(C2xC4)192,212
(C2×Dic3).43(C2×C4) = C2.(C4×Dic6)φ: C2×C4/C4C2 ⊆ Out C2×Dic3192(C2xDic3).43(C2xC4)192,213
(C2×Dic3).44(C2×C4) = D6⋊C43C4φ: C2×C4/C4C2 ⊆ Out C2×Dic396(C2xDic3).44(C2xC4)192,229
(C2×Dic3).45(C2×C4) = C8×Dic6φ: C2×C4/C4C2 ⊆ Out C2×Dic3192(C2xDic3).45(C2xC4)192,237
(C2×Dic3).46(C2×C4) = C8×D12φ: C2×C4/C4C2 ⊆ Out C2×Dic396(C2xDic3).46(C2xC4)192,245
(C2×Dic3).47(C2×C4) = D6.C42φ: C2×C4/C4C2 ⊆ Out C2×Dic396(C2xDic3).47(C2xC4)192,248
(C2×Dic3).48(C2×C4) = D6.4C42φ: C2×C4/C4C2 ⊆ Out C2×Dic396(C2xDic3).48(C2xC4)192,267
(C2×Dic3).49(C2×C4) = C3⋊D4⋊C8φ: C2×C4/C4C2 ⊆ Out C2×Dic396(C2xDic3).49(C2xC4)192,284
(C2×Dic3).50(C2×C4) = D6⋊C8⋊C2φ: C2×C4/C4C2 ⊆ Out C2×Dic396(C2xDic3).50(C2xC4)192,286
(C2×Dic3).51(C2×C4) = Dic3⋊M4(2)φ: C2×C4/C4C2 ⊆ Out C2×Dic396(C2xDic3).51(C2xC4)192,288
(C2×Dic3).52(C2×C4) = Dic6⋊C8φ: C2×C4/C4C2 ⊆ Out C2×Dic3192(C2xDic3).52(C2xC4)192,389
(C2×Dic3).53(C2×C4) = D12⋊C8φ: C2×C4/C4C2 ⊆ Out C2×Dic396(C2xDic3).53(C2xC4)192,393
(C2×Dic3).54(C2×C4) = C42.30D6φ: C2×C4/C4C2 ⊆ Out C2×Dic396(C2xDic3).54(C2xC4)192,398
(C2×Dic3).55(C2×C4) = C42.31D6φ: C2×C4/C4C2 ⊆ Out C2×Dic396(C2xDic3).55(C2xC4)192,399
(C2×Dic3).56(C2×C4) = C4×Dic3⋊C4φ: C2×C4/C4C2 ⊆ Out C2×Dic3192(C2xDic3).56(C2xC4)192,490
(C2×Dic3).57(C2×C4) = C4×C4⋊Dic3φ: C2×C4/C4C2 ⊆ Out C2×Dic3192(C2xDic3).57(C2xC4)192,493
(C2×Dic3).58(C2×C4) = C24.14D6φ: C2×C4/C4C2 ⊆ Out C2×Dic396(C2xDic3).58(C2xC4)192,503
(C2×Dic3).59(C2×C4) = C24.15D6φ: C2×C4/C4C2 ⊆ Out C2×Dic396(C2xDic3).59(C2xC4)192,504
(C2×Dic3).60(C2×C4) = C24.24D6φ: C2×C4/C4C2 ⊆ Out C2×Dic396(C2xDic3).60(C2xC4)192,516
(C2×Dic3).61(C2×C4) = Dic3×C4⋊C4φ: C2×C4/C4C2 ⊆ Out C2×Dic3192(C2xDic3).61(C2xC4)192,533
(C2×Dic3).62(C2×C4) = Dic3⋊(C4⋊C4)φ: C2×C4/C4C2 ⊆ Out C2×Dic3192(C2xDic3).62(C2xC4)192,535
(C2×Dic3).63(C2×C4) = C6.67(C4×D4)φ: C2×C4/C4C2 ⊆ Out C2×Dic3192(C2xDic3).63(C2xC4)192,537
(C2×Dic3).64(C2×C4) = D6⋊C47C4φ: C2×C4/C4C2 ⊆ Out C2×Dic396(C2xDic3).64(C2xC4)192,549
(C2×Dic3).65(C2×C4) = C12.12C42φ: C2×C4/C4C2 ⊆ Out C2×Dic396(C2xDic3).65(C2xC4)192,660
(C2×Dic3).66(C2×C4) = C8×C3⋊D4φ: C2×C4/C4C2 ⊆ Out C2×Dic396(C2xDic3).66(C2xC4)192,668
(C2×Dic3).67(C2×C4) = C12.7C42φ: C2×C4/C4C2 ⊆ Out C2×Dic396(C2xDic3).67(C2xC4)192,681
(C2×Dic3).68(C2×C4) = C2421D4φ: C2×C4/C4C2 ⊆ Out C2×Dic396(C2xDic3).68(C2xC4)192,687
(C2×Dic3).69(C2×C4) = C2×C4×Dic6φ: C2×C4/C4C2 ⊆ Out C2×Dic3192(C2xDic3).69(C2xC4)192,1026
(C2×Dic3).70(C2×C4) = C2×Dic6⋊C4φ: C2×C4/C4C2 ⊆ Out C2×Dic3192(C2xDic3).70(C2xC4)192,1055
(C2×Dic3).71(C2×C4) = C2×C8○D12φ: C2×C4/C4C2 ⊆ Out C2×Dic396(C2xDic3).71(C2xC4)192,1297
(C2×Dic3).72(C2×C4) = C2×D12.C4φ: C2×C4/C4C2 ⊆ Out C2×Dic396(C2xDic3).72(C2xC4)192,1303
(C2×Dic3).73(C2×C4) = S3×C8○D4φ: C2×C4/C4C2 ⊆ Out C2×Dic3484(C2xDic3).73(C2xC4)192,1308
(C2×Dic3).74(C2×C4) = Dic3.5C42φ: C2×C4/C22C2 ⊆ Out C2×Dic3192(C2xDic3).74(C2xC4)192,207
(C2×Dic3).75(C2×C4) = C3⋊(C428C4)φ: C2×C4/C22C2 ⊆ Out C2×Dic3192(C2xDic3).75(C2xC4)192,209
(C2×Dic3).76(C2×C4) = C3⋊(C425C4)φ: C2×C4/C22C2 ⊆ Out C2×Dic3192(C2xDic3).76(C2xC4)192,210
(C2×Dic3).77(C2×C4) = C22.58(S3×D4)φ: C2×C4/C22C2 ⊆ Out C2×Dic396(C2xDic3).77(C2xC4)192,223
(C2×Dic3).78(C2×C4) = D6⋊(C4⋊C4)φ: C2×C4/C22C2 ⊆ Out C2×Dic396(C2xDic3).78(C2xC4)192,226
(C2×Dic3).79(C2×C4) = C42.282D6φ: C2×C4/C22C2 ⊆ Out C2×Dic396(C2xDic3).79(C2xC4)192,244
(C2×Dic3).80(C2×C4) = C4×C8⋊S3φ: C2×C4/C22C2 ⊆ Out C2×Dic396(C2xDic3).80(C2xC4)192,246
(C2×Dic3).81(C2×C4) = C42.182D6φ: C2×C4/C22C2 ⊆ Out C2×Dic396(C2xDic3).81(C2xC4)192,264
(C2×Dic3).82(C2×C4) = Dic35M4(2)φ: C2×C4/C22C2 ⊆ Out C2×Dic396(C2xDic3).82(C2xC4)192,266
(C2×Dic3).83(C2×C4) = Dic3.M4(2)φ: C2×C4/C22C2 ⊆ Out C2×Dic396(C2xDic3).83(C2xC4)192,278
(C2×Dic3).84(C2×C4) = S3×C22⋊C8φ: C2×C4/C22C2 ⊆ Out C2×Dic348(C2xDic3).84(C2xC4)192,283
(C2×Dic3).85(C2×C4) = D6⋊M4(2)φ: C2×C4/C22C2 ⊆ Out C2×Dic348(C2xDic3).85(C2xC4)192,285
(C2×Dic3).86(C2×C4) = M4(2).21D6φ: C2×C4/C22C2 ⊆ Out C2×Dic3488+(C2xDic3).86(C2xC4)192,310
(C2×Dic3).87(C2×C4) = S3×C4⋊C8φ: C2×C4/C22C2 ⊆ Out C2×Dic396(C2xDic3).87(C2xC4)192,391
(C2×Dic3).88(C2×C4) = C42.200D6φ: C2×C4/C22C2 ⊆ Out C2×Dic396(C2xDic3).88(C2xC4)192,392
(C2×Dic3).89(C2×C4) = C42.202D6φ: C2×C4/C22C2 ⊆ Out C2×Dic396(C2xDic3).89(C2xC4)192,394
(C2×Dic3).90(C2×C4) = C12⋊M4(2)φ: C2×C4/C22C2 ⊆ Out C2×Dic396(C2xDic3).90(C2xC4)192,396
(C2×Dic3).91(C2×C4) = C426Dic3φ: C2×C4/C22C2 ⊆ Out C2×Dic3192(C2xDic3).91(C2xC4)192,491
(C2×Dic3).92(C2×C4) = C24.55D6φ: C2×C4/C22C2 ⊆ Out C2×Dic396(C2xDic3).92(C2xC4)192,501
(C2×Dic3).93(C2×C4) = C24.56D6φ: C2×C4/C22C2 ⊆ Out C2×Dic396(C2xDic3).93(C2xC4)192,502
(C2×Dic3).94(C2×C4) = (C4×Dic3)⋊8C4φ: C2×C4/C22C2 ⊆ Out C2×Dic3192(C2xDic3).94(C2xC4)192,534
(C2×Dic3).95(C2×C4) = (C4×Dic3)⋊9C4φ: C2×C4/C22C2 ⊆ Out C2×Dic3192(C2xDic3).95(C2xC4)192,536
(C2×Dic3).96(C2×C4) = C4⋊(D6⋊C4)φ: C2×C4/C22C2 ⊆ Out C2×Dic396(C2xDic3).96(C2xC4)192,546
(C2×Dic3).97(C2×C4) = C2×Dic3⋊C8φ: C2×C4/C22C2 ⊆ Out C2×Dic3192(C2xDic3).97(C2xC4)192,658
(C2×Dic3).98(C2×C4) = C2×C24⋊C4φ: C2×C4/C22C2 ⊆ Out C2×Dic3192(C2xDic3).98(C2xC4)192,659
(C2×Dic3).99(C2×C4) = C2×D6⋊C8φ: C2×C4/C22C2 ⊆ Out C2×Dic396(C2xDic3).99(C2xC4)192,667
(C2×Dic3).100(C2×C4) = Dic3×M4(2)φ: C2×C4/C22C2 ⊆ Out C2×Dic396(C2xDic3).100(C2xC4)192,676
(C2×Dic3).101(C2×C4) = Dic34M4(2)φ: C2×C4/C22C2 ⊆ Out C2×Dic396(C2xDic3).101(C2xC4)192,677
(C2×Dic3).102(C2×C4) = D66M4(2)φ: C2×C4/C22C2 ⊆ Out C2×Dic348(C2xDic3).102(C2xC4)192,685
(C2×Dic3).103(C2×C4) = C2×C422S3φ: C2×C4/C22C2 ⊆ Out C2×Dic396(C2xDic3).103(C2xC4)192,1031
(C2×Dic3).104(C2×C4) = C22×C8⋊S3φ: C2×C4/C22C2 ⊆ Out C2×Dic396(C2xDic3).104(C2xC4)192,1296
(C2×Dic3).105(C2×C4) = C2×S3×M4(2)φ: C2×C4/C22C2 ⊆ Out C2×Dic348(C2xDic3).105(C2xC4)192,1302
(C2×Dic3).106(C2×C4) = S3×C4×C8φ: trivial image96(C2xDic3).106(C2xC4)192,243
(C2×Dic3).107(C2×C4) = S3×C8⋊C4φ: trivial image96(C2xDic3).107(C2xC4)192,263
(C2×Dic3).108(C2×C4) = Dic3.5M4(2)φ: trivial image96(C2xDic3).108(C2xC4)192,277
(C2×Dic3).109(C2×C4) = Dic3×C42φ: trivial image192(C2xDic3).109(C2xC4)192,489
(C2×Dic3).110(C2×C4) = Dic3×C2×C8φ: trivial image192(C2xDic3).110(C2xC4)192,657
(C2×Dic3).111(C2×C4) = C2×C4⋊C47S3φ: trivial image96(C2xDic3).111(C2xC4)192,1061
(C2×Dic3).112(C2×C4) = S3×C22×C8φ: trivial image96(C2xDic3).112(C2xC4)192,1295

׿
×
𝔽