Copied to
clipboard

G = C2×C9.A4order 216 = 23·33

Direct product of C2 and C9.A4

direct product, metabelian, soluble, monomial, A-group

Aliases: C2×C9.A4, C23⋊C27, C22⋊C54, C18.3A4, C9.(C2×A4), (C2×C6).C18, (C22×C6).C9, (C2×C18).2C6, (C22×C18).C3, C6.2(C3.A4), C3.(C2×C3.A4), SmallGroup(216,22)

Series: Derived Chief Lower central Upper central

C1C22 — C2×C9.A4
C1C22C2×C6C2×C18C9.A4 — C2×C9.A4
C22 — C2×C9.A4
C1C18

Generators and relations for C2×C9.A4
 G = < a,b,c,d,e | a2=b9=c2=d2=1, e3=b, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, ece-1=cd=dc, ede-1=c >

3C2
3C2
3C22
3C22
3C6
3C6
3C2×C6
3C2×C6
3C18
3C18
4C27
3C2×C18
3C2×C18
4C54

Smallest permutation representation of C2×C9.A4
On 54 points
Generators in S54
(1 52)(2 53)(3 54)(4 28)(5 29)(6 30)(7 31)(8 32)(9 33)(10 34)(11 35)(12 36)(13 37)(14 38)(15 39)(16 40)(17 41)(18 42)(19 43)(20 44)(21 45)(22 46)(23 47)(24 48)(25 49)(26 50)(27 51)
(1 4 7 10 13 16 19 22 25)(2 5 8 11 14 17 20 23 26)(3 6 9 12 15 18 21 24 27)(28 31 34 37 40 43 46 49 52)(29 32 35 38 41 44 47 50 53)(30 33 36 39 42 45 48 51 54)
(2 53)(3 54)(5 29)(6 30)(8 32)(9 33)(11 35)(12 36)(14 38)(15 39)(17 41)(18 42)(20 44)(21 45)(23 47)(24 48)(26 50)(27 51)
(1 52)(3 54)(4 28)(6 30)(7 31)(9 33)(10 34)(12 36)(13 37)(15 39)(16 40)(18 42)(19 43)(21 45)(22 46)(24 48)(25 49)(27 51)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)

G:=sub<Sym(54)| (1,52)(2,53)(3,54)(4,28)(5,29)(6,30)(7,31)(8,32)(9,33)(10,34)(11,35)(12,36)(13,37)(14,38)(15,39)(16,40)(17,41)(18,42)(19,43)(20,44)(21,45)(22,46)(23,47)(24,48)(25,49)(26,50)(27,51), (1,4,7,10,13,16,19,22,25)(2,5,8,11,14,17,20,23,26)(3,6,9,12,15,18,21,24,27)(28,31,34,37,40,43,46,49,52)(29,32,35,38,41,44,47,50,53)(30,33,36,39,42,45,48,51,54), (2,53)(3,54)(5,29)(6,30)(8,32)(9,33)(11,35)(12,36)(14,38)(15,39)(17,41)(18,42)(20,44)(21,45)(23,47)(24,48)(26,50)(27,51), (1,52)(3,54)(4,28)(6,30)(7,31)(9,33)(10,34)(12,36)(13,37)(15,39)(16,40)(18,42)(19,43)(21,45)(22,46)(24,48)(25,49)(27,51), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)>;

G:=Group( (1,52)(2,53)(3,54)(4,28)(5,29)(6,30)(7,31)(8,32)(9,33)(10,34)(11,35)(12,36)(13,37)(14,38)(15,39)(16,40)(17,41)(18,42)(19,43)(20,44)(21,45)(22,46)(23,47)(24,48)(25,49)(26,50)(27,51), (1,4,7,10,13,16,19,22,25)(2,5,8,11,14,17,20,23,26)(3,6,9,12,15,18,21,24,27)(28,31,34,37,40,43,46,49,52)(29,32,35,38,41,44,47,50,53)(30,33,36,39,42,45,48,51,54), (2,53)(3,54)(5,29)(6,30)(8,32)(9,33)(11,35)(12,36)(14,38)(15,39)(17,41)(18,42)(20,44)(21,45)(23,47)(24,48)(26,50)(27,51), (1,52)(3,54)(4,28)(6,30)(7,31)(9,33)(10,34)(12,36)(13,37)(15,39)(16,40)(18,42)(19,43)(21,45)(22,46)(24,48)(25,49)(27,51), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54) );

G=PermutationGroup([[(1,52),(2,53),(3,54),(4,28),(5,29),(6,30),(7,31),(8,32),(9,33),(10,34),(11,35),(12,36),(13,37),(14,38),(15,39),(16,40),(17,41),(18,42),(19,43),(20,44),(21,45),(22,46),(23,47),(24,48),(25,49),(26,50),(27,51)], [(1,4,7,10,13,16,19,22,25),(2,5,8,11,14,17,20,23,26),(3,6,9,12,15,18,21,24,27),(28,31,34,37,40,43,46,49,52),(29,32,35,38,41,44,47,50,53),(30,33,36,39,42,45,48,51,54)], [(2,53),(3,54),(5,29),(6,30),(8,32),(9,33),(11,35),(12,36),(14,38),(15,39),(17,41),(18,42),(20,44),(21,45),(23,47),(24,48),(26,50),(27,51)], [(1,52),(3,54),(4,28),(6,30),(7,31),(9,33),(10,34),(12,36),(13,37),(15,39),(16,40),(18,42),(19,43),(21,45),(22,46),(24,48),(25,49),(27,51)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)]])

C2×C9.A4 is a maximal subgroup of   C18.S4
C2×C9.A4 is a maximal quotient of   Q8.C54

72 conjugacy classes

class 1 2A2B2C3A3B6A6B6C6D6E6F9A···9F18A···18F18G···18R27A···27R54A···54R
order1222336666669···918···1818···1827···2754···54
size1133111133331···11···13···34···44···4

72 irreducible representations

dim11111111333333
type++++
imageC1C2C3C6C9C18C27C54A4C2×A4C3.A4C2×C3.A4C9.A4C2×C9.A4
kernelC2×C9.A4C9.A4C22×C18C2×C18C22×C6C2×C6C23C22C18C9C6C3C2C1
# reps1122661818112266

Matrix representation of C2×C9.A4 in GL3(𝔽109) generated by

10800
01080
00108
,
2700
0270
0027
,
100
161080
220108
,
10800
01080
8701
,
161070
8931
108870
G:=sub<GL(3,GF(109))| [108,0,0,0,108,0,0,0,108],[27,0,0,0,27,0,0,0,27],[1,16,22,0,108,0,0,0,108],[108,0,87,0,108,0,0,0,1],[16,8,108,107,93,87,0,1,0] >;

C2×C9.A4 in GAP, Magma, Sage, TeX

C_2\times C_9.A_4
% in TeX

G:=Group("C2xC9.A4");
// GroupNames label

G:=SmallGroup(216,22);
// by ID

G=gap.SmallGroup(216,22);
# by ID

G:=PCGroup([6,-2,-3,-3,-3,-2,2,43,68,1630,2927]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^9=c^2=d^2=1,e^3=b,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,e*c*e^-1=c*d=d*c,e*d*e^-1=c>;
// generators/relations

Export

Subgroup lattice of C2×C9.A4 in TeX

׿
×
𝔽