Extensions 1→N→G→Q→1 with N=C6 and Q=S3xC6

Direct product G=NxQ with N=C6 and Q=S3xC6
dρLabelID
S3xC6272S3xC6^2216,174

Semidirect products G=N:Q with N=C6 and Q=S3xC6
extensionφ:Q→Aut NdρLabelID
C6:1(S3xC6) = S32xC6φ: S3xC6/C3xS3C2 ⊆ Aut C6244C6:1(S3xC6)216,170
C6:2(S3xC6) = C2xC6xC3:S3φ: S3xC6/C3xC6C2 ⊆ Aut C672C6:2(S3xC6)216,175

Non-split extensions G=N.Q with N=C6 and Q=S3xC6
extensionφ:Q→Aut NdρLabelID
C6.1(S3xC6) = C3xS3xDic3φ: S3xC6/C3xS3C2 ⊆ Aut C6244C6.1(S3xC6)216,119
C6.2(S3xC6) = C3xC6.D6φ: S3xC6/C3xS3C2 ⊆ Aut C6244C6.2(S3xC6)216,120
C6.3(S3xC6) = C3xD6:S3φ: S3xC6/C3xS3C2 ⊆ Aut C6244C6.3(S3xC6)216,121
C6.4(S3xC6) = C3xC3:D12φ: S3xC6/C3xS3C2 ⊆ Aut C6244C6.4(S3xC6)216,122
C6.5(S3xC6) = C3xC32:2Q8φ: S3xC6/C3xS3C2 ⊆ Aut C6244C6.5(S3xC6)216,123
C6.6(S3xC6) = C3xDic18φ: S3xC6/C3xC6C2 ⊆ Aut C6722C6.6(S3xC6)216,43
C6.7(S3xC6) = C12xD9φ: S3xC6/C3xC6C2 ⊆ Aut C6722C6.7(S3xC6)216,45
C6.8(S3xC6) = C3xD36φ: S3xC6/C3xC6C2 ⊆ Aut C6722C6.8(S3xC6)216,46
C6.9(S3xC6) = He3:3Q8φ: S3xC6/C3xC6C2 ⊆ Aut C6726-C6.9(S3xC6)216,49
C6.10(S3xC6) = C4xC32:C6φ: S3xC6/C3xC6C2 ⊆ Aut C6366C6.10(S3xC6)216,50
C6.11(S3xC6) = He3:4D4φ: S3xC6/C3xC6C2 ⊆ Aut C6366+C6.11(S3xC6)216,51
C6.12(S3xC6) = C36.C6φ: S3xC6/C3xC6C2 ⊆ Aut C6726-C6.12(S3xC6)216,52
C6.13(S3xC6) = C4xC9:C6φ: S3xC6/C3xC6C2 ⊆ Aut C6366C6.13(S3xC6)216,53
C6.14(S3xC6) = D36:C3φ: S3xC6/C3xC6C2 ⊆ Aut C6366+C6.14(S3xC6)216,54
C6.15(S3xC6) = C6xDic9φ: S3xC6/C3xC6C2 ⊆ Aut C672C6.15(S3xC6)216,55
C6.16(S3xC6) = C3xC9:D4φ: S3xC6/C3xC6C2 ⊆ Aut C6362C6.16(S3xC6)216,57
C6.17(S3xC6) = C2xC32:C12φ: S3xC6/C3xC6C2 ⊆ Aut C672C6.17(S3xC6)216,59
C6.18(S3xC6) = He3:6D4φ: S3xC6/C3xC6C2 ⊆ Aut C6366C6.18(S3xC6)216,60
C6.19(S3xC6) = C2xC9:C12φ: S3xC6/C3xC6C2 ⊆ Aut C672C6.19(S3xC6)216,61
C6.20(S3xC6) = Dic9:C6φ: S3xC6/C3xC6C2 ⊆ Aut C6366C6.20(S3xC6)216,62
C6.21(S3xC6) = C2xC6xD9φ: S3xC6/C3xC6C2 ⊆ Aut C672C6.21(S3xC6)216,108
C6.22(S3xC6) = C22xC32:C6φ: S3xC6/C3xC6C2 ⊆ Aut C636C6.22(S3xC6)216,110
C6.23(S3xC6) = C22xC9:C6φ: S3xC6/C3xC6C2 ⊆ Aut C636C6.23(S3xC6)216,111
C6.24(S3xC6) = C3xC32:4Q8φ: S3xC6/C3xC6C2 ⊆ Aut C672C6.24(S3xC6)216,140
C6.25(S3xC6) = C12xC3:S3φ: S3xC6/C3xC6C2 ⊆ Aut C672C6.25(S3xC6)216,141
C6.26(S3xC6) = C3xC12:S3φ: S3xC6/C3xC6C2 ⊆ Aut C672C6.26(S3xC6)216,142
C6.27(S3xC6) = C6xC3:Dic3φ: S3xC6/C3xC6C2 ⊆ Aut C672C6.27(S3xC6)216,143
C6.28(S3xC6) = C3xC32:7D4φ: S3xC6/C3xC6C2 ⊆ Aut C636C6.28(S3xC6)216,144
C6.29(S3xC6) = C9xDic6central extension (φ=1)722C6.29(S3xC6)216,44
C6.30(S3xC6) = S3xC36central extension (φ=1)722C6.30(S3xC6)216,47
C6.31(S3xC6) = C9xD12central extension (φ=1)722C6.31(S3xC6)216,48
C6.32(S3xC6) = Dic3xC18central extension (φ=1)72C6.32(S3xC6)216,56
C6.33(S3xC6) = C9xC3:D4central extension (φ=1)362C6.33(S3xC6)216,58
C6.34(S3xC6) = S3xC2xC18central extension (φ=1)72C6.34(S3xC6)216,109
C6.35(S3xC6) = C32xDic6central extension (φ=1)72C6.35(S3xC6)216,135
C6.36(S3xC6) = S3xC3xC12central extension (φ=1)72C6.36(S3xC6)216,136
C6.37(S3xC6) = C32xD12central extension (φ=1)72C6.37(S3xC6)216,137
C6.38(S3xC6) = Dic3xC3xC6central extension (φ=1)72C6.38(S3xC6)216,138
C6.39(S3xC6) = C32xC3:D4central extension (φ=1)36C6.39(S3xC6)216,139

׿
x
:
Z
F
o
wr
Q
<