extension | φ:Q→Aut N | d | ρ | Label | ID |
C6.1(S3xC6) = C3xS3xDic3 | φ: S3xC6/C3xS3 → C2 ⊆ Aut C6 | 24 | 4 | C6.1(S3xC6) | 216,119 |
C6.2(S3xC6) = C3xC6.D6 | φ: S3xC6/C3xS3 → C2 ⊆ Aut C6 | 24 | 4 | C6.2(S3xC6) | 216,120 |
C6.3(S3xC6) = C3xD6:S3 | φ: S3xC6/C3xS3 → C2 ⊆ Aut C6 | 24 | 4 | C6.3(S3xC6) | 216,121 |
C6.4(S3xC6) = C3xC3:D12 | φ: S3xC6/C3xS3 → C2 ⊆ Aut C6 | 24 | 4 | C6.4(S3xC6) | 216,122 |
C6.5(S3xC6) = C3xC32:2Q8 | φ: S3xC6/C3xS3 → C2 ⊆ Aut C6 | 24 | 4 | C6.5(S3xC6) | 216,123 |
C6.6(S3xC6) = C3xDic18 | φ: S3xC6/C3xC6 → C2 ⊆ Aut C6 | 72 | 2 | C6.6(S3xC6) | 216,43 |
C6.7(S3xC6) = C12xD9 | φ: S3xC6/C3xC6 → C2 ⊆ Aut C6 | 72 | 2 | C6.7(S3xC6) | 216,45 |
C6.8(S3xC6) = C3xD36 | φ: S3xC6/C3xC6 → C2 ⊆ Aut C6 | 72 | 2 | C6.8(S3xC6) | 216,46 |
C6.9(S3xC6) = He3:3Q8 | φ: S3xC6/C3xC6 → C2 ⊆ Aut C6 | 72 | 6- | C6.9(S3xC6) | 216,49 |
C6.10(S3xC6) = C4xC32:C6 | φ: S3xC6/C3xC6 → C2 ⊆ Aut C6 | 36 | 6 | C6.10(S3xC6) | 216,50 |
C6.11(S3xC6) = He3:4D4 | φ: S3xC6/C3xC6 → C2 ⊆ Aut C6 | 36 | 6+ | C6.11(S3xC6) | 216,51 |
C6.12(S3xC6) = C36.C6 | φ: S3xC6/C3xC6 → C2 ⊆ Aut C6 | 72 | 6- | C6.12(S3xC6) | 216,52 |
C6.13(S3xC6) = C4xC9:C6 | φ: S3xC6/C3xC6 → C2 ⊆ Aut C6 | 36 | 6 | C6.13(S3xC6) | 216,53 |
C6.14(S3xC6) = D36:C3 | φ: S3xC6/C3xC6 → C2 ⊆ Aut C6 | 36 | 6+ | C6.14(S3xC6) | 216,54 |
C6.15(S3xC6) = C6xDic9 | φ: S3xC6/C3xC6 → C2 ⊆ Aut C6 | 72 | | C6.15(S3xC6) | 216,55 |
C6.16(S3xC6) = C3xC9:D4 | φ: S3xC6/C3xC6 → C2 ⊆ Aut C6 | 36 | 2 | C6.16(S3xC6) | 216,57 |
C6.17(S3xC6) = C2xC32:C12 | φ: S3xC6/C3xC6 → C2 ⊆ Aut C6 | 72 | | C6.17(S3xC6) | 216,59 |
C6.18(S3xC6) = He3:6D4 | φ: S3xC6/C3xC6 → C2 ⊆ Aut C6 | 36 | 6 | C6.18(S3xC6) | 216,60 |
C6.19(S3xC6) = C2xC9:C12 | φ: S3xC6/C3xC6 → C2 ⊆ Aut C6 | 72 | | C6.19(S3xC6) | 216,61 |
C6.20(S3xC6) = Dic9:C6 | φ: S3xC6/C3xC6 → C2 ⊆ Aut C6 | 36 | 6 | C6.20(S3xC6) | 216,62 |
C6.21(S3xC6) = C2xC6xD9 | φ: S3xC6/C3xC6 → C2 ⊆ Aut C6 | 72 | | C6.21(S3xC6) | 216,108 |
C6.22(S3xC6) = C22xC32:C6 | φ: S3xC6/C3xC6 → C2 ⊆ Aut C6 | 36 | | C6.22(S3xC6) | 216,110 |
C6.23(S3xC6) = C22xC9:C6 | φ: S3xC6/C3xC6 → C2 ⊆ Aut C6 | 36 | | C6.23(S3xC6) | 216,111 |
C6.24(S3xC6) = C3xC32:4Q8 | φ: S3xC6/C3xC6 → C2 ⊆ Aut C6 | 72 | | C6.24(S3xC6) | 216,140 |
C6.25(S3xC6) = C12xC3:S3 | φ: S3xC6/C3xC6 → C2 ⊆ Aut C6 | 72 | | C6.25(S3xC6) | 216,141 |
C6.26(S3xC6) = C3xC12:S3 | φ: S3xC6/C3xC6 → C2 ⊆ Aut C6 | 72 | | C6.26(S3xC6) | 216,142 |
C6.27(S3xC6) = C6xC3:Dic3 | φ: S3xC6/C3xC6 → C2 ⊆ Aut C6 | 72 | | C6.27(S3xC6) | 216,143 |
C6.28(S3xC6) = C3xC32:7D4 | φ: S3xC6/C3xC6 → C2 ⊆ Aut C6 | 36 | | C6.28(S3xC6) | 216,144 |
C6.29(S3xC6) = C9xDic6 | central extension (φ=1) | 72 | 2 | C6.29(S3xC6) | 216,44 |
C6.30(S3xC6) = S3xC36 | central extension (φ=1) | 72 | 2 | C6.30(S3xC6) | 216,47 |
C6.31(S3xC6) = C9xD12 | central extension (φ=1) | 72 | 2 | C6.31(S3xC6) | 216,48 |
C6.32(S3xC6) = Dic3xC18 | central extension (φ=1) | 72 | | C6.32(S3xC6) | 216,56 |
C6.33(S3xC6) = C9xC3:D4 | central extension (φ=1) | 36 | 2 | C6.33(S3xC6) | 216,58 |
C6.34(S3xC6) = S3xC2xC18 | central extension (φ=1) | 72 | | C6.34(S3xC6) | 216,109 |
C6.35(S3xC6) = C32xDic6 | central extension (φ=1) | 72 | | C6.35(S3xC6) | 216,135 |
C6.36(S3xC6) = S3xC3xC12 | central extension (φ=1) | 72 | | C6.36(S3xC6) | 216,136 |
C6.37(S3xC6) = C32xD12 | central extension (φ=1) | 72 | | C6.37(S3xC6) | 216,137 |
C6.38(S3xC6) = Dic3xC3xC6 | central extension (φ=1) | 72 | | C6.38(S3xC6) | 216,138 |
C6.39(S3xC6) = C32xC3:D4 | central extension (φ=1) | 36 | | C6.39(S3xC6) | 216,139 |