Copied to
clipboard

G = S3×D17order 204 = 22·3·17

Direct product of S3 and D17

direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: S3×D17, D51⋊C2, C31D34, C171D6, C51⋊C22, (S3×C17)⋊C2, (C3×D17)⋊C2, SmallGroup(204,7)

Series: Derived Chief Lower central Upper central

C1C51 — S3×D17
C1C17C51C3×D17 — S3×D17
C51 — S3×D17
C1

Generators and relations for S3×D17
 G = < a,b,c,d | a3=b2=c17=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

3C2
17C2
51C2
51C22
17C6
17S3
3C34
3D17
17D6
3D34

Character table of S3×D17

 class 12A2B2C3617A17B17C17D17E17F17G17H34A34B34C34D34E34F34G34H51A51B51C51D51E51F51G51H
 size 131751234222222226666666644444444
ρ1111111111111111111111111111111    trivial
ρ21-11-11111111111-1-1-1-1-1-1-1-111111111    linear of order 2
ρ311-1-11-1111111111111111111111111    linear of order 2
ρ41-1-111-111111111-1-1-1-1-1-1-1-111111111    linear of order 2
ρ52020-1-12222222200000000-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ620-20-112222222200000000-1-1-1-1-1-1-1-1    orthogonal lifted from D6
ρ72-20020ζ1714173ζ171617ζ1711176ζ179178ζ1712175ζ1710177ζ1713174ζ1715172171117617121751710177171517217141731791781713174171617ζ179178ζ1713174ζ171617ζ1711176ζ1712175ζ1710177ζ1715172ζ1714173    orthogonal lifted from D34
ρ82-20020ζ171617ζ1711176ζ1715172ζ1714173ζ1713174ζ179178ζ1710177ζ1712175171517217131741791781712175171617171417317101771711176ζ1714173ζ1710177ζ1711176ζ1715172ζ1713174ζ179178ζ1712175ζ171617    orthogonal lifted from D34
ρ9220020ζ1712175ζ1713174ζ1710177ζ1715172ζ1714173ζ1711176ζ171617ζ179178ζ1710177ζ1714173ζ1711176ζ179178ζ1712175ζ1715172ζ171617ζ1713174ζ1715172ζ171617ζ1713174ζ1710177ζ1714173ζ1711176ζ179178ζ1712175    orthogonal lifted from D17
ρ10220020ζ1714173ζ171617ζ1711176ζ179178ζ1712175ζ1710177ζ1713174ζ1715172ζ1711176ζ1712175ζ1710177ζ1715172ζ1714173ζ179178ζ1713174ζ171617ζ179178ζ1713174ζ171617ζ1711176ζ1712175ζ1710177ζ1715172ζ1714173    orthogonal lifted from D17
ρ112-20020ζ1711176ζ1715172ζ1712175ζ171617ζ1710177ζ1714173ζ179178ζ1713174171217517101771714173171317417111761716171791781715172ζ171617ζ179178ζ1715172ζ1712175ζ1710177ζ1714173ζ1713174ζ1711176    orthogonal lifted from D34
ρ12220020ζ1710177ζ179178ζ1714173ζ1713174ζ1711176ζ1712175ζ1715172ζ171617ζ1714173ζ1711176ζ1712175ζ171617ζ1710177ζ1713174ζ1715172ζ179178ζ1713174ζ1715172ζ179178ζ1714173ζ1711176ζ1712175ζ171617ζ1710177    orthogonal lifted from D17
ρ132-20020ζ1710177ζ179178ζ1714173ζ1713174ζ1711176ζ1712175ζ1715172ζ171617171417317111761712175171617171017717131741715172179178ζ1713174ζ1715172ζ179178ζ1714173ζ1711176ζ1712175ζ171617ζ1710177    orthogonal lifted from D34
ρ14220020ζ171617ζ1711176ζ1715172ζ1714173ζ1713174ζ179178ζ1710177ζ1712175ζ1715172ζ1713174ζ179178ζ1712175ζ171617ζ1714173ζ1710177ζ1711176ζ1714173ζ1710177ζ1711176ζ1715172ζ1713174ζ179178ζ1712175ζ171617    orthogonal lifted from D17
ρ152-20020ζ1712175ζ1713174ζ1710177ζ1715172ζ1714173ζ1711176ζ171617ζ179178171017717141731711176179178171217517151721716171713174ζ1715172ζ171617ζ1713174ζ1710177ζ1714173ζ1711176ζ179178ζ1712175    orthogonal lifted from D34
ρ16220020ζ1713174ζ1710177ζ179178ζ1712175ζ171617ζ1715172ζ1711176ζ1714173ζ179178ζ171617ζ1715172ζ1714173ζ1713174ζ1712175ζ1711176ζ1710177ζ1712175ζ1711176ζ1710177ζ179178ζ171617ζ1715172ζ1714173ζ1713174    orthogonal lifted from D17
ρ172-20020ζ1715172ζ1712175ζ1713174ζ1711176ζ179178ζ171617ζ1714173ζ1710177171317417917817161717101771715172171117617141731712175ζ1711176ζ1714173ζ1712175ζ1713174ζ179178ζ171617ζ1710177ζ1715172    orthogonal lifted from D34
ρ18220020ζ179178ζ1714173ζ171617ζ1710177ζ1715172ζ1713174ζ1712175ζ1711176ζ171617ζ1715172ζ1713174ζ1711176ζ179178ζ1710177ζ1712175ζ1714173ζ1710177ζ1712175ζ1714173ζ171617ζ1715172ζ1713174ζ1711176ζ179178    orthogonal lifted from D17
ρ19220020ζ1711176ζ1715172ζ1712175ζ171617ζ1710177ζ1714173ζ179178ζ1713174ζ1712175ζ1710177ζ1714173ζ1713174ζ1711176ζ171617ζ179178ζ1715172ζ171617ζ179178ζ1715172ζ1712175ζ1710177ζ1714173ζ1713174ζ1711176    orthogonal lifted from D17
ρ20220020ζ1715172ζ1712175ζ1713174ζ1711176ζ179178ζ171617ζ1714173ζ1710177ζ1713174ζ179178ζ171617ζ1710177ζ1715172ζ1711176ζ1714173ζ1712175ζ1711176ζ1714173ζ1712175ζ1713174ζ179178ζ171617ζ1710177ζ1715172    orthogonal lifted from D17
ρ212-20020ζ179178ζ1714173ζ171617ζ1710177ζ1715172ζ1713174ζ1712175ζ1711176171617171517217131741711176179178171017717121751714173ζ1710177ζ1712175ζ1714173ζ171617ζ1715172ζ1713174ζ1711176ζ179178    orthogonal lifted from D34
ρ222-20020ζ1713174ζ1710177ζ179178ζ1712175ζ171617ζ1715172ζ1711176ζ1714173179178171617171517217141731713174171217517111761710177ζ1712175ζ1711176ζ1710177ζ179178ζ171617ζ1715172ζ1714173ζ1713174    orthogonal lifted from D34
ρ234000-201715+2ζ1721712+2ζ1751713+2ζ1741711+2ζ176179+2ζ1781716+2ζ171714+2ζ1731710+2ζ17700000000171117617141731712175171317417917817161717101771715172    orthogonal faithful
ρ244000-201714+2ζ1731716+2ζ171711+2ζ176179+2ζ1781712+2ζ1751710+2ζ1771713+2ζ1741715+2ζ17200000000179178171317417161717111761712175171017717151721714173    orthogonal faithful
ρ254000-201713+2ζ1741710+2ζ177179+2ζ1781712+2ζ1751716+2ζ171715+2ζ1721711+2ζ1761714+2ζ17300000000171217517111761710177179178171617171517217141731713174    orthogonal faithful
ρ264000-201711+2ζ1761715+2ζ1721712+2ζ1751716+2ζ171710+2ζ1771714+2ζ173179+2ζ1781713+2ζ17400000000171617179178171517217121751710177171417317131741711176    orthogonal faithful
ρ274000-201712+2ζ1751713+2ζ1741710+2ζ1771715+2ζ1721714+2ζ1731711+2ζ1761716+2ζ17179+2ζ17800000000171517217161717131741710177171417317111761791781712175    orthogonal faithful
ρ284000-201716+2ζ171711+2ζ1761715+2ζ1721714+2ζ1731713+2ζ174179+2ζ1781710+2ζ1771712+2ζ17500000000171417317101771711176171517217131741791781712175171617    orthogonal faithful
ρ294000-20179+2ζ1781714+2ζ1731716+2ζ171710+2ζ1771715+2ζ1721713+2ζ1741712+2ζ1751711+2ζ17600000000171017717121751714173171617171517217131741711176179178    orthogonal faithful
ρ304000-201710+2ζ177179+2ζ1781714+2ζ1731713+2ζ1741711+2ζ1761712+2ζ1751715+2ζ1721716+2ζ1700000000171317417151721791781714173171117617121751716171710177    orthogonal faithful

Smallest permutation representation of S3×D17
On 51 points
Generators in S51
(1 20 43)(2 21 44)(3 22 45)(4 23 46)(5 24 47)(6 25 48)(7 26 49)(8 27 50)(9 28 51)(10 29 35)(11 30 36)(12 31 37)(13 32 38)(14 33 39)(15 34 40)(16 18 41)(17 19 42)
(18 41)(19 42)(20 43)(21 44)(22 45)(23 46)(24 47)(25 48)(26 49)(27 50)(28 51)(29 35)(30 36)(31 37)(32 38)(33 39)(34 40)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17)(18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34)(35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51)
(1 17)(2 16)(3 15)(4 14)(5 13)(6 12)(7 11)(8 10)(18 21)(19 20)(22 34)(23 33)(24 32)(25 31)(26 30)(27 29)(35 50)(36 49)(37 48)(38 47)(39 46)(40 45)(41 44)(42 43)

G:=sub<Sym(51)| (1,20,43)(2,21,44)(3,22,45)(4,23,46)(5,24,47)(6,25,48)(7,26,49)(8,27,50)(9,28,51)(10,29,35)(11,30,36)(12,31,37)(13,32,38)(14,33,39)(15,34,40)(16,18,41)(17,19,42), (18,41)(19,42)(20,43)(21,44)(22,45)(23,46)(24,47)(25,48)(26,49)(27,50)(28,51)(29,35)(30,36)(31,37)(32,38)(33,39)(34,40), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17)(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51), (1,17)(2,16)(3,15)(4,14)(5,13)(6,12)(7,11)(8,10)(18,21)(19,20)(22,34)(23,33)(24,32)(25,31)(26,30)(27,29)(35,50)(36,49)(37,48)(38,47)(39,46)(40,45)(41,44)(42,43)>;

G:=Group( (1,20,43)(2,21,44)(3,22,45)(4,23,46)(5,24,47)(6,25,48)(7,26,49)(8,27,50)(9,28,51)(10,29,35)(11,30,36)(12,31,37)(13,32,38)(14,33,39)(15,34,40)(16,18,41)(17,19,42), (18,41)(19,42)(20,43)(21,44)(22,45)(23,46)(24,47)(25,48)(26,49)(27,50)(28,51)(29,35)(30,36)(31,37)(32,38)(33,39)(34,40), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17)(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51), (1,17)(2,16)(3,15)(4,14)(5,13)(6,12)(7,11)(8,10)(18,21)(19,20)(22,34)(23,33)(24,32)(25,31)(26,30)(27,29)(35,50)(36,49)(37,48)(38,47)(39,46)(40,45)(41,44)(42,43) );

G=PermutationGroup([[(1,20,43),(2,21,44),(3,22,45),(4,23,46),(5,24,47),(6,25,48),(7,26,49),(8,27,50),(9,28,51),(10,29,35),(11,30,36),(12,31,37),(13,32,38),(14,33,39),(15,34,40),(16,18,41),(17,19,42)], [(18,41),(19,42),(20,43),(21,44),(22,45),(23,46),(24,47),(25,48),(26,49),(27,50),(28,51),(29,35),(30,36),(31,37),(32,38),(33,39),(34,40)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17),(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34),(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51)], [(1,17),(2,16),(3,15),(4,14),(5,13),(6,12),(7,11),(8,10),(18,21),(19,20),(22,34),(23,33),(24,32),(25,31),(26,30),(27,29),(35,50),(36,49),(37,48),(38,47),(39,46),(40,45),(41,44),(42,43)]])

S3×D17 is a maximal quotient of   D512C4  C51⋊D4  C3⋊D68  C17⋊D12  C51⋊Q8

Matrix representation of S3×D17 in GL4(𝔽103) generated by

1000
0100
000102
001102
,
1000
0100
0001
0010
,
0100
1029500
0010
0001
,
0100
1000
0010
0001
G:=sub<GL(4,GF(103))| [1,0,0,0,0,1,0,0,0,0,0,1,0,0,102,102],[1,0,0,0,0,1,0,0,0,0,0,1,0,0,1,0],[0,102,0,0,1,95,0,0,0,0,1,0,0,0,0,1],[0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,1] >;

S3×D17 in GAP, Magma, Sage, TeX

S_3\times D_{17}
% in TeX

G:=Group("S3xD17");
// GroupNames label

G:=SmallGroup(204,7);
// by ID

G=gap.SmallGroup(204,7);
# by ID

G:=PCGroup([4,-2,-2,-3,-17,54,3075]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^2=c^17=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

Export

Subgroup lattice of S3×D17 in TeX
Character table of S3×D17 in TeX

׿
×
𝔽