direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: S3×D17, D51⋊C2, C3⋊1D34, C17⋊1D6, C51⋊C22, (S3×C17)⋊C2, (C3×D17)⋊C2, SmallGroup(204,7)
Series: Derived ►Chief ►Lower central ►Upper central
C51 — S3×D17 |
Generators and relations for S3×D17
G = < a,b,c,d | a3=b2=c17=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >
Character table of S3×D17
class | 1 | 2A | 2B | 2C | 3 | 6 | 17A | 17B | 17C | 17D | 17E | 17F | 17G | 17H | 34A | 34B | 34C | 34D | 34E | 34F | 34G | 34H | 51A | 51B | 51C | 51D | 51E | 51F | 51G | 51H | |
size | 1 | 3 | 17 | 51 | 2 | 34 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 2 | 0 | 2 | 0 | -1 | -1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ6 | 2 | 0 | -2 | 0 | -1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from D6 |
ρ7 | 2 | -2 | 0 | 0 | 2 | 0 | ζ1714+ζ173 | ζ1716+ζ17 | ζ1711+ζ176 | ζ179+ζ178 | ζ1712+ζ175 | ζ1710+ζ177 | ζ1713+ζ174 | ζ1715+ζ172 | -ζ1711-ζ176 | -ζ1712-ζ175 | -ζ1710-ζ177 | -ζ1715-ζ172 | -ζ1714-ζ173 | -ζ179-ζ178 | -ζ1713-ζ174 | -ζ1716-ζ17 | ζ179+ζ178 | ζ1713+ζ174 | ζ1716+ζ17 | ζ1711+ζ176 | ζ1712+ζ175 | ζ1710+ζ177 | ζ1715+ζ172 | ζ1714+ζ173 | orthogonal lifted from D34 |
ρ8 | 2 | -2 | 0 | 0 | 2 | 0 | ζ1716+ζ17 | ζ1711+ζ176 | ζ1715+ζ172 | ζ1714+ζ173 | ζ1713+ζ174 | ζ179+ζ178 | ζ1710+ζ177 | ζ1712+ζ175 | -ζ1715-ζ172 | -ζ1713-ζ174 | -ζ179-ζ178 | -ζ1712-ζ175 | -ζ1716-ζ17 | -ζ1714-ζ173 | -ζ1710-ζ177 | -ζ1711-ζ176 | ζ1714+ζ173 | ζ1710+ζ177 | ζ1711+ζ176 | ζ1715+ζ172 | ζ1713+ζ174 | ζ179+ζ178 | ζ1712+ζ175 | ζ1716+ζ17 | orthogonal lifted from D34 |
ρ9 | 2 | 2 | 0 | 0 | 2 | 0 | ζ1712+ζ175 | ζ1713+ζ174 | ζ1710+ζ177 | ζ1715+ζ172 | ζ1714+ζ173 | ζ1711+ζ176 | ζ1716+ζ17 | ζ179+ζ178 | ζ1710+ζ177 | ζ1714+ζ173 | ζ1711+ζ176 | ζ179+ζ178 | ζ1712+ζ175 | ζ1715+ζ172 | ζ1716+ζ17 | ζ1713+ζ174 | ζ1715+ζ172 | ζ1716+ζ17 | ζ1713+ζ174 | ζ1710+ζ177 | ζ1714+ζ173 | ζ1711+ζ176 | ζ179+ζ178 | ζ1712+ζ175 | orthogonal lifted from D17 |
ρ10 | 2 | 2 | 0 | 0 | 2 | 0 | ζ1714+ζ173 | ζ1716+ζ17 | ζ1711+ζ176 | ζ179+ζ178 | ζ1712+ζ175 | ζ1710+ζ177 | ζ1713+ζ174 | ζ1715+ζ172 | ζ1711+ζ176 | ζ1712+ζ175 | ζ1710+ζ177 | ζ1715+ζ172 | ζ1714+ζ173 | ζ179+ζ178 | ζ1713+ζ174 | ζ1716+ζ17 | ζ179+ζ178 | ζ1713+ζ174 | ζ1716+ζ17 | ζ1711+ζ176 | ζ1712+ζ175 | ζ1710+ζ177 | ζ1715+ζ172 | ζ1714+ζ173 | orthogonal lifted from D17 |
ρ11 | 2 | -2 | 0 | 0 | 2 | 0 | ζ1711+ζ176 | ζ1715+ζ172 | ζ1712+ζ175 | ζ1716+ζ17 | ζ1710+ζ177 | ζ1714+ζ173 | ζ179+ζ178 | ζ1713+ζ174 | -ζ1712-ζ175 | -ζ1710-ζ177 | -ζ1714-ζ173 | -ζ1713-ζ174 | -ζ1711-ζ176 | -ζ1716-ζ17 | -ζ179-ζ178 | -ζ1715-ζ172 | ζ1716+ζ17 | ζ179+ζ178 | ζ1715+ζ172 | ζ1712+ζ175 | ζ1710+ζ177 | ζ1714+ζ173 | ζ1713+ζ174 | ζ1711+ζ176 | orthogonal lifted from D34 |
ρ12 | 2 | 2 | 0 | 0 | 2 | 0 | ζ1710+ζ177 | ζ179+ζ178 | ζ1714+ζ173 | ζ1713+ζ174 | ζ1711+ζ176 | ζ1712+ζ175 | ζ1715+ζ172 | ζ1716+ζ17 | ζ1714+ζ173 | ζ1711+ζ176 | ζ1712+ζ175 | ζ1716+ζ17 | ζ1710+ζ177 | ζ1713+ζ174 | ζ1715+ζ172 | ζ179+ζ178 | ζ1713+ζ174 | ζ1715+ζ172 | ζ179+ζ178 | ζ1714+ζ173 | ζ1711+ζ176 | ζ1712+ζ175 | ζ1716+ζ17 | ζ1710+ζ177 | orthogonal lifted from D17 |
ρ13 | 2 | -2 | 0 | 0 | 2 | 0 | ζ1710+ζ177 | ζ179+ζ178 | ζ1714+ζ173 | ζ1713+ζ174 | ζ1711+ζ176 | ζ1712+ζ175 | ζ1715+ζ172 | ζ1716+ζ17 | -ζ1714-ζ173 | -ζ1711-ζ176 | -ζ1712-ζ175 | -ζ1716-ζ17 | -ζ1710-ζ177 | -ζ1713-ζ174 | -ζ1715-ζ172 | -ζ179-ζ178 | ζ1713+ζ174 | ζ1715+ζ172 | ζ179+ζ178 | ζ1714+ζ173 | ζ1711+ζ176 | ζ1712+ζ175 | ζ1716+ζ17 | ζ1710+ζ177 | orthogonal lifted from D34 |
ρ14 | 2 | 2 | 0 | 0 | 2 | 0 | ζ1716+ζ17 | ζ1711+ζ176 | ζ1715+ζ172 | ζ1714+ζ173 | ζ1713+ζ174 | ζ179+ζ178 | ζ1710+ζ177 | ζ1712+ζ175 | ζ1715+ζ172 | ζ1713+ζ174 | ζ179+ζ178 | ζ1712+ζ175 | ζ1716+ζ17 | ζ1714+ζ173 | ζ1710+ζ177 | ζ1711+ζ176 | ζ1714+ζ173 | ζ1710+ζ177 | ζ1711+ζ176 | ζ1715+ζ172 | ζ1713+ζ174 | ζ179+ζ178 | ζ1712+ζ175 | ζ1716+ζ17 | orthogonal lifted from D17 |
ρ15 | 2 | -2 | 0 | 0 | 2 | 0 | ζ1712+ζ175 | ζ1713+ζ174 | ζ1710+ζ177 | ζ1715+ζ172 | ζ1714+ζ173 | ζ1711+ζ176 | ζ1716+ζ17 | ζ179+ζ178 | -ζ1710-ζ177 | -ζ1714-ζ173 | -ζ1711-ζ176 | -ζ179-ζ178 | -ζ1712-ζ175 | -ζ1715-ζ172 | -ζ1716-ζ17 | -ζ1713-ζ174 | ζ1715+ζ172 | ζ1716+ζ17 | ζ1713+ζ174 | ζ1710+ζ177 | ζ1714+ζ173 | ζ1711+ζ176 | ζ179+ζ178 | ζ1712+ζ175 | orthogonal lifted from D34 |
ρ16 | 2 | 2 | 0 | 0 | 2 | 0 | ζ1713+ζ174 | ζ1710+ζ177 | ζ179+ζ178 | ζ1712+ζ175 | ζ1716+ζ17 | ζ1715+ζ172 | ζ1711+ζ176 | ζ1714+ζ173 | ζ179+ζ178 | ζ1716+ζ17 | ζ1715+ζ172 | ζ1714+ζ173 | ζ1713+ζ174 | ζ1712+ζ175 | ζ1711+ζ176 | ζ1710+ζ177 | ζ1712+ζ175 | ζ1711+ζ176 | ζ1710+ζ177 | ζ179+ζ178 | ζ1716+ζ17 | ζ1715+ζ172 | ζ1714+ζ173 | ζ1713+ζ174 | orthogonal lifted from D17 |
ρ17 | 2 | -2 | 0 | 0 | 2 | 0 | ζ1715+ζ172 | ζ1712+ζ175 | ζ1713+ζ174 | ζ1711+ζ176 | ζ179+ζ178 | ζ1716+ζ17 | ζ1714+ζ173 | ζ1710+ζ177 | -ζ1713-ζ174 | -ζ179-ζ178 | -ζ1716-ζ17 | -ζ1710-ζ177 | -ζ1715-ζ172 | -ζ1711-ζ176 | -ζ1714-ζ173 | -ζ1712-ζ175 | ζ1711+ζ176 | ζ1714+ζ173 | ζ1712+ζ175 | ζ1713+ζ174 | ζ179+ζ178 | ζ1716+ζ17 | ζ1710+ζ177 | ζ1715+ζ172 | orthogonal lifted from D34 |
ρ18 | 2 | 2 | 0 | 0 | 2 | 0 | ζ179+ζ178 | ζ1714+ζ173 | ζ1716+ζ17 | ζ1710+ζ177 | ζ1715+ζ172 | ζ1713+ζ174 | ζ1712+ζ175 | ζ1711+ζ176 | ζ1716+ζ17 | ζ1715+ζ172 | ζ1713+ζ174 | ζ1711+ζ176 | ζ179+ζ178 | ζ1710+ζ177 | ζ1712+ζ175 | ζ1714+ζ173 | ζ1710+ζ177 | ζ1712+ζ175 | ζ1714+ζ173 | ζ1716+ζ17 | ζ1715+ζ172 | ζ1713+ζ174 | ζ1711+ζ176 | ζ179+ζ178 | orthogonal lifted from D17 |
ρ19 | 2 | 2 | 0 | 0 | 2 | 0 | ζ1711+ζ176 | ζ1715+ζ172 | ζ1712+ζ175 | ζ1716+ζ17 | ζ1710+ζ177 | ζ1714+ζ173 | ζ179+ζ178 | ζ1713+ζ174 | ζ1712+ζ175 | ζ1710+ζ177 | ζ1714+ζ173 | ζ1713+ζ174 | ζ1711+ζ176 | ζ1716+ζ17 | ζ179+ζ178 | ζ1715+ζ172 | ζ1716+ζ17 | ζ179+ζ178 | ζ1715+ζ172 | ζ1712+ζ175 | ζ1710+ζ177 | ζ1714+ζ173 | ζ1713+ζ174 | ζ1711+ζ176 | orthogonal lifted from D17 |
ρ20 | 2 | 2 | 0 | 0 | 2 | 0 | ζ1715+ζ172 | ζ1712+ζ175 | ζ1713+ζ174 | ζ1711+ζ176 | ζ179+ζ178 | ζ1716+ζ17 | ζ1714+ζ173 | ζ1710+ζ177 | ζ1713+ζ174 | ζ179+ζ178 | ζ1716+ζ17 | ζ1710+ζ177 | ζ1715+ζ172 | ζ1711+ζ176 | ζ1714+ζ173 | ζ1712+ζ175 | ζ1711+ζ176 | ζ1714+ζ173 | ζ1712+ζ175 | ζ1713+ζ174 | ζ179+ζ178 | ζ1716+ζ17 | ζ1710+ζ177 | ζ1715+ζ172 | orthogonal lifted from D17 |
ρ21 | 2 | -2 | 0 | 0 | 2 | 0 | ζ179+ζ178 | ζ1714+ζ173 | ζ1716+ζ17 | ζ1710+ζ177 | ζ1715+ζ172 | ζ1713+ζ174 | ζ1712+ζ175 | ζ1711+ζ176 | -ζ1716-ζ17 | -ζ1715-ζ172 | -ζ1713-ζ174 | -ζ1711-ζ176 | -ζ179-ζ178 | -ζ1710-ζ177 | -ζ1712-ζ175 | -ζ1714-ζ173 | ζ1710+ζ177 | ζ1712+ζ175 | ζ1714+ζ173 | ζ1716+ζ17 | ζ1715+ζ172 | ζ1713+ζ174 | ζ1711+ζ176 | ζ179+ζ178 | orthogonal lifted from D34 |
ρ22 | 2 | -2 | 0 | 0 | 2 | 0 | ζ1713+ζ174 | ζ1710+ζ177 | ζ179+ζ178 | ζ1712+ζ175 | ζ1716+ζ17 | ζ1715+ζ172 | ζ1711+ζ176 | ζ1714+ζ173 | -ζ179-ζ178 | -ζ1716-ζ17 | -ζ1715-ζ172 | -ζ1714-ζ173 | -ζ1713-ζ174 | -ζ1712-ζ175 | -ζ1711-ζ176 | -ζ1710-ζ177 | ζ1712+ζ175 | ζ1711+ζ176 | ζ1710+ζ177 | ζ179+ζ178 | ζ1716+ζ17 | ζ1715+ζ172 | ζ1714+ζ173 | ζ1713+ζ174 | orthogonal lifted from D34 |
ρ23 | 4 | 0 | 0 | 0 | -2 | 0 | 2ζ1715+2ζ172 | 2ζ1712+2ζ175 | 2ζ1713+2ζ174 | 2ζ1711+2ζ176 | 2ζ179+2ζ178 | 2ζ1716+2ζ17 | 2ζ1714+2ζ173 | 2ζ1710+2ζ177 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ1711-ζ176 | -ζ1714-ζ173 | -ζ1712-ζ175 | -ζ1713-ζ174 | -ζ179-ζ178 | -ζ1716-ζ17 | -ζ1710-ζ177 | -ζ1715-ζ172 | orthogonal faithful |
ρ24 | 4 | 0 | 0 | 0 | -2 | 0 | 2ζ1714+2ζ173 | 2ζ1716+2ζ17 | 2ζ1711+2ζ176 | 2ζ179+2ζ178 | 2ζ1712+2ζ175 | 2ζ1710+2ζ177 | 2ζ1713+2ζ174 | 2ζ1715+2ζ172 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ179-ζ178 | -ζ1713-ζ174 | -ζ1716-ζ17 | -ζ1711-ζ176 | -ζ1712-ζ175 | -ζ1710-ζ177 | -ζ1715-ζ172 | -ζ1714-ζ173 | orthogonal faithful |
ρ25 | 4 | 0 | 0 | 0 | -2 | 0 | 2ζ1713+2ζ174 | 2ζ1710+2ζ177 | 2ζ179+2ζ178 | 2ζ1712+2ζ175 | 2ζ1716+2ζ17 | 2ζ1715+2ζ172 | 2ζ1711+2ζ176 | 2ζ1714+2ζ173 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ1712-ζ175 | -ζ1711-ζ176 | -ζ1710-ζ177 | -ζ179-ζ178 | -ζ1716-ζ17 | -ζ1715-ζ172 | -ζ1714-ζ173 | -ζ1713-ζ174 | orthogonal faithful |
ρ26 | 4 | 0 | 0 | 0 | -2 | 0 | 2ζ1711+2ζ176 | 2ζ1715+2ζ172 | 2ζ1712+2ζ175 | 2ζ1716+2ζ17 | 2ζ1710+2ζ177 | 2ζ1714+2ζ173 | 2ζ179+2ζ178 | 2ζ1713+2ζ174 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ1716-ζ17 | -ζ179-ζ178 | -ζ1715-ζ172 | -ζ1712-ζ175 | -ζ1710-ζ177 | -ζ1714-ζ173 | -ζ1713-ζ174 | -ζ1711-ζ176 | orthogonal faithful |
ρ27 | 4 | 0 | 0 | 0 | -2 | 0 | 2ζ1712+2ζ175 | 2ζ1713+2ζ174 | 2ζ1710+2ζ177 | 2ζ1715+2ζ172 | 2ζ1714+2ζ173 | 2ζ1711+2ζ176 | 2ζ1716+2ζ17 | 2ζ179+2ζ178 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ1715-ζ172 | -ζ1716-ζ17 | -ζ1713-ζ174 | -ζ1710-ζ177 | -ζ1714-ζ173 | -ζ1711-ζ176 | -ζ179-ζ178 | -ζ1712-ζ175 | orthogonal faithful |
ρ28 | 4 | 0 | 0 | 0 | -2 | 0 | 2ζ1716+2ζ17 | 2ζ1711+2ζ176 | 2ζ1715+2ζ172 | 2ζ1714+2ζ173 | 2ζ1713+2ζ174 | 2ζ179+2ζ178 | 2ζ1710+2ζ177 | 2ζ1712+2ζ175 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ1714-ζ173 | -ζ1710-ζ177 | -ζ1711-ζ176 | -ζ1715-ζ172 | -ζ1713-ζ174 | -ζ179-ζ178 | -ζ1712-ζ175 | -ζ1716-ζ17 | orthogonal faithful |
ρ29 | 4 | 0 | 0 | 0 | -2 | 0 | 2ζ179+2ζ178 | 2ζ1714+2ζ173 | 2ζ1716+2ζ17 | 2ζ1710+2ζ177 | 2ζ1715+2ζ172 | 2ζ1713+2ζ174 | 2ζ1712+2ζ175 | 2ζ1711+2ζ176 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ1710-ζ177 | -ζ1712-ζ175 | -ζ1714-ζ173 | -ζ1716-ζ17 | -ζ1715-ζ172 | -ζ1713-ζ174 | -ζ1711-ζ176 | -ζ179-ζ178 | orthogonal faithful |
ρ30 | 4 | 0 | 0 | 0 | -2 | 0 | 2ζ1710+2ζ177 | 2ζ179+2ζ178 | 2ζ1714+2ζ173 | 2ζ1713+2ζ174 | 2ζ1711+2ζ176 | 2ζ1712+2ζ175 | 2ζ1715+2ζ172 | 2ζ1716+2ζ17 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ1713-ζ174 | -ζ1715-ζ172 | -ζ179-ζ178 | -ζ1714-ζ173 | -ζ1711-ζ176 | -ζ1712-ζ175 | -ζ1716-ζ17 | -ζ1710-ζ177 | orthogonal faithful |
(1 20 43)(2 21 44)(3 22 45)(4 23 46)(5 24 47)(6 25 48)(7 26 49)(8 27 50)(9 28 51)(10 29 35)(11 30 36)(12 31 37)(13 32 38)(14 33 39)(15 34 40)(16 18 41)(17 19 42)
(18 41)(19 42)(20 43)(21 44)(22 45)(23 46)(24 47)(25 48)(26 49)(27 50)(28 51)(29 35)(30 36)(31 37)(32 38)(33 39)(34 40)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17)(18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34)(35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51)
(1 17)(2 16)(3 15)(4 14)(5 13)(6 12)(7 11)(8 10)(18 21)(19 20)(22 34)(23 33)(24 32)(25 31)(26 30)(27 29)(35 50)(36 49)(37 48)(38 47)(39 46)(40 45)(41 44)(42 43)
G:=sub<Sym(51)| (1,20,43)(2,21,44)(3,22,45)(4,23,46)(5,24,47)(6,25,48)(7,26,49)(8,27,50)(9,28,51)(10,29,35)(11,30,36)(12,31,37)(13,32,38)(14,33,39)(15,34,40)(16,18,41)(17,19,42), (18,41)(19,42)(20,43)(21,44)(22,45)(23,46)(24,47)(25,48)(26,49)(27,50)(28,51)(29,35)(30,36)(31,37)(32,38)(33,39)(34,40), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17)(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51), (1,17)(2,16)(3,15)(4,14)(5,13)(6,12)(7,11)(8,10)(18,21)(19,20)(22,34)(23,33)(24,32)(25,31)(26,30)(27,29)(35,50)(36,49)(37,48)(38,47)(39,46)(40,45)(41,44)(42,43)>;
G:=Group( (1,20,43)(2,21,44)(3,22,45)(4,23,46)(5,24,47)(6,25,48)(7,26,49)(8,27,50)(9,28,51)(10,29,35)(11,30,36)(12,31,37)(13,32,38)(14,33,39)(15,34,40)(16,18,41)(17,19,42), (18,41)(19,42)(20,43)(21,44)(22,45)(23,46)(24,47)(25,48)(26,49)(27,50)(28,51)(29,35)(30,36)(31,37)(32,38)(33,39)(34,40), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17)(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51), (1,17)(2,16)(3,15)(4,14)(5,13)(6,12)(7,11)(8,10)(18,21)(19,20)(22,34)(23,33)(24,32)(25,31)(26,30)(27,29)(35,50)(36,49)(37,48)(38,47)(39,46)(40,45)(41,44)(42,43) );
G=PermutationGroup([[(1,20,43),(2,21,44),(3,22,45),(4,23,46),(5,24,47),(6,25,48),(7,26,49),(8,27,50),(9,28,51),(10,29,35),(11,30,36),(12,31,37),(13,32,38),(14,33,39),(15,34,40),(16,18,41),(17,19,42)], [(18,41),(19,42),(20,43),(21,44),(22,45),(23,46),(24,47),(25,48),(26,49),(27,50),(28,51),(29,35),(30,36),(31,37),(32,38),(33,39),(34,40)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17),(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34),(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51)], [(1,17),(2,16),(3,15),(4,14),(5,13),(6,12),(7,11),(8,10),(18,21),(19,20),(22,34),(23,33),(24,32),(25,31),(26,30),(27,29),(35,50),(36,49),(37,48),(38,47),(39,46),(40,45),(41,44),(42,43)]])
S3×D17 is a maximal quotient of D51⋊2C4 C51⋊D4 C3⋊D68 C17⋊D12 C51⋊Q8
Matrix representation of S3×D17 ►in GL4(𝔽103) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 0 | 102 |
0 | 0 | 1 | 102 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 |
0 | 1 | 0 | 0 |
102 | 95 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
G:=sub<GL(4,GF(103))| [1,0,0,0,0,1,0,0,0,0,0,1,0,0,102,102],[1,0,0,0,0,1,0,0,0,0,0,1,0,0,1,0],[0,102,0,0,1,95,0,0,0,0,1,0,0,0,0,1],[0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,1] >;
S3×D17 in GAP, Magma, Sage, TeX
S_3\times D_{17}
% in TeX
G:=Group("S3xD17");
// GroupNames label
G:=SmallGroup(204,7);
// by ID
G=gap.SmallGroup(204,7);
# by ID
G:=PCGroup([4,-2,-2,-3,-17,54,3075]);
// Polycyclic
G:=Group<a,b,c,d|a^3=b^2=c^17=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations
Export
Subgroup lattice of S3×D17 in TeX
Character table of S3×D17 in TeX