Extensions 1→N→G→Q→1 with N=C9 and Q=C3×D4

Direct product G=N×Q with N=C9 and Q=C3×D4
dρLabelID
D4×C3×C9108D4xC3xC9216,76

Semidirect products G=N:Q with N=C9 and Q=C3×D4
extensionφ:Q→Aut NdρLabelID
C91(C3×D4) = D36⋊C3φ: C3×D4/C4C6 ⊆ Aut C9366+C9:1(C3xD4)216,54
C92(C3×D4) = Dic9⋊C6φ: C3×D4/C22C6 ⊆ Aut C9366C9:2(C3xD4)216,62
C93(C3×D4) = D4×3- 1+2φ: C3×D4/D4C3 ⊆ Aut C9366C9:3(C3xD4)216,78
C94(C3×D4) = C3×D36φ: C3×D4/C12C2 ⊆ Aut C9722C9:4(C3xD4)216,46
C95(C3×D4) = C3×C9⋊D4φ: C3×D4/C2×C6C2 ⊆ Aut C9362C9:5(C3xD4)216,57

Non-split extensions G=N.Q with N=C9 and Q=C3×D4
extensionφ:Q→Aut NdρLabelID
C9.(C3×D4) = D4×C27central extension (φ=1)1082C9.(C3xD4)216,10

׿
×
𝔽