metabelian, supersoluble, monomial
Aliases: Dic9⋊C6, D18⋊2C6, C62.3S3, 3- 1+2⋊2D4, C9⋊C12⋊C2, C9⋊D4⋊C3, C9⋊2(C3×D4), (C2×C18)⋊3C6, C6.20(S3×C6), C18.5(C2×C6), (C3×C6).15D6, C22⋊3(C9⋊C6), C32.(C3⋊D4), (C22×3- 1+2)⋊1C2, (C2×3- 1+2).5C22, (C2×C9⋊C6)⋊2C2, C2.5(C2×C9⋊C6), C3.3(C3×C3⋊D4), (C2×C6).15(C3×S3), SmallGroup(216,62)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C3 — C9 — C18 — C2×3- 1+2 — C2×C9⋊C6 — Dic9⋊C6 |
Generators and relations for Dic9⋊C6
G = < a,b,c | a18=c6=1, b2=a9, bab-1=a-1, cac-1=a7, cbc-1=a9b >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)
(1 20 10 29)(2 19 11 28)(3 36 12 27)(4 35 13 26)(5 34 14 25)(6 33 15 24)(7 32 16 23)(8 31 17 22)(9 30 18 21)
(1 20)(2 33 8 21 14 27)(3 28 15 22 9 34)(4 23)(5 36 11 24 17 30)(6 31 18 25 12 19)(7 26)(10 29)(13 32)(16 35)
G:=sub<Sym(36)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36), (1,20,10,29)(2,19,11,28)(3,36,12,27)(4,35,13,26)(5,34,14,25)(6,33,15,24)(7,32,16,23)(8,31,17,22)(9,30,18,21), (1,20)(2,33,8,21,14,27)(3,28,15,22,9,34)(4,23)(5,36,11,24,17,30)(6,31,18,25,12,19)(7,26)(10,29)(13,32)(16,35)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36), (1,20,10,29)(2,19,11,28)(3,36,12,27)(4,35,13,26)(5,34,14,25)(6,33,15,24)(7,32,16,23)(8,31,17,22)(9,30,18,21), (1,20)(2,33,8,21,14,27)(3,28,15,22,9,34)(4,23)(5,36,11,24,17,30)(6,31,18,25,12,19)(7,26)(10,29)(13,32)(16,35) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)], [(1,20,10,29),(2,19,11,28),(3,36,12,27),(4,35,13,26),(5,34,14,25),(6,33,15,24),(7,32,16,23),(8,31,17,22),(9,30,18,21)], [(1,20),(2,33,8,21,14,27),(3,28,15,22,9,34),(4,23),(5,36,11,24,17,30),(6,31,18,25,12,19),(7,26),(10,29),(13,32),(16,35)]])
Dic9⋊C6 is a maximal subgroup of
D36⋊6C6 D4×C9⋊C6 Dic18⋊2C6
Dic9⋊C6 is a maximal quotient of Dic9⋊C12 D18⋊C12 Dic18⋊C6 D36⋊C6 Dic18.C6 D36.C6 C62.27D6
31 conjugacy classes
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 4 | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 6I | 9A | 9B | 9C | 12A | 12B | 18A | ··· | 18I |
order | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 4 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 9 | 9 | 9 | 12 | 12 | 18 | ··· | 18 |
size | 1 | 1 | 2 | 18 | 2 | 3 | 3 | 18 | 2 | 2 | 2 | 3 | 3 | 6 | 6 | 18 | 18 | 6 | 6 | 6 | 18 | 18 | 6 | ··· | 6 |
31 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 6 | 6 | 6 |
type | + | + | + | + | + | + | + | + | + | ||||||||||
image | C1 | C2 | C2 | C2 | C3 | C6 | C6 | C6 | S3 | D4 | D6 | C3×S3 | C3×D4 | C3⋊D4 | S3×C6 | C3×C3⋊D4 | C9⋊C6 | C2×C9⋊C6 | Dic9⋊C6 |
kernel | Dic9⋊C6 | C9⋊C12 | C2×C9⋊C6 | C22×3- 1+2 | C9⋊D4 | Dic9 | D18 | C2×C18 | C62 | 3- 1+2 | C3×C6 | C2×C6 | C9 | C32 | C6 | C3 | C22 | C2 | C1 |
# reps | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 1 | 1 | 2 |
Matrix representation of Dic9⋊C6 ►in GL6(𝔽37)
0 | 0 | 1 | 1 | 0 | 0 |
0 | 0 | 36 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 1 |
0 | 0 | 0 | 0 | 36 | 0 |
0 | 36 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 | 0 |
30 | 23 | 0 | 0 | 0 | 0 |
30 | 7 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 14 | 7 |
0 | 0 | 0 | 0 | 30 | 23 |
0 | 0 | 14 | 7 | 0 | 0 |
0 | 0 | 30 | 23 | 0 | 0 |
7 | 14 | 0 | 0 | 0 | 0 |
23 | 30 | 0 | 0 | 0 | 0 |
0 | 0 | 23 | 30 | 0 | 0 |
0 | 0 | 7 | 30 | 0 | 0 |
0 | 0 | 0 | 0 | 7 | 30 |
0 | 0 | 0 | 0 | 7 | 14 |
G:=sub<GL(6,GF(37))| [0,0,0,0,0,1,0,0,0,0,36,1,1,36,0,0,0,0,1,0,0,0,0,0,0,0,1,36,0,0,0,0,1,0,0,0],[30,30,0,0,0,0,23,7,0,0,0,0,0,0,0,0,14,30,0,0,0,0,7,23,0,0,14,30,0,0,0,0,7,23,0,0],[7,23,0,0,0,0,14,30,0,0,0,0,0,0,23,7,0,0,0,0,30,30,0,0,0,0,0,0,7,7,0,0,0,0,30,14] >;
Dic9⋊C6 in GAP, Magma, Sage, TeX
{\rm Dic}_9\rtimes C_6
% in TeX
G:=Group("Dic9:C6");
// GroupNames label
G:=SmallGroup(216,62);
// by ID
G=gap.SmallGroup(216,62);
# by ID
G:=PCGroup([6,-2,-2,-3,-2,-3,-3,169,3604,736,208,5189]);
// Polycyclic
G:=Group<a,b,c|a^18=c^6=1,b^2=a^9,b*a*b^-1=a^-1,c*a*c^-1=a^7,c*b*c^-1=a^9*b>;
// generators/relations
Export