Copied to
clipboard

G = C2×Q8×D7order 224 = 25·7

Direct product of C2, Q8 and D7

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×Q8×D7, C14.8C24, C28.22C23, Dic149C22, D14.10C23, Dic7.5C23, C142(C2×Q8), C72(C22×Q8), (Q8×C14)⋊5C2, (C2×C4).61D14, (C7×Q8)⋊5C22, C2.9(C23×D7), C4.22(C22×D7), (C2×Dic14)⋊13C2, (C2×C28).46C22, (C2×C14).66C23, (C4×D7).13C22, C22.31(C22×D7), (C2×Dic7).44C22, (C22×D7).36C22, (C2×C4×D7).6C2, SmallGroup(224,181)

Series: Derived Chief Lower central Upper central

C1C14 — C2×Q8×D7
C1C7C14D14C22×D7C2×C4×D7 — C2×Q8×D7
C7C14 — C2×Q8×D7
C1C22C2×Q8

Generators and relations for C2×Q8×D7
 G = < a,b,c,d,e | a2=b4=d7=e2=1, c2=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc-1=b-1, bd=db, be=eb, cd=dc, ce=ec, ede=d-1 >

Subgroups: 510 in 156 conjugacy classes, 97 normal (10 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C7, C2×C4, C2×C4, Q8, Q8, C23, D7, C14, C14, C22×C4, C2×Q8, C2×Q8, Dic7, C28, D14, C2×C14, C22×Q8, Dic14, C4×D7, C2×Dic7, C2×C28, C7×Q8, C22×D7, C2×Dic14, C2×C4×D7, Q8×D7, Q8×C14, C2×Q8×D7
Quotients: C1, C2, C22, Q8, C23, D7, C2×Q8, C24, D14, C22×Q8, C22×D7, Q8×D7, C23×D7, C2×Q8×D7

Smallest permutation representation of C2×Q8×D7
On 112 points
Generators in S112
(1 62)(2 63)(3 57)(4 58)(5 59)(6 60)(7 61)(8 64)(9 65)(10 66)(11 67)(12 68)(13 69)(14 70)(15 71)(16 72)(17 73)(18 74)(19 75)(20 76)(21 77)(22 78)(23 79)(24 80)(25 81)(26 82)(27 83)(28 84)(29 85)(30 86)(31 87)(32 88)(33 89)(34 90)(35 91)(36 92)(37 93)(38 94)(39 95)(40 96)(41 97)(42 98)(43 99)(44 100)(45 101)(46 102)(47 103)(48 104)(49 105)(50 106)(51 107)(52 108)(53 109)(54 110)(55 111)(56 112)
(1 41 13 34)(2 42 14 35)(3 36 8 29)(4 37 9 30)(5 38 10 31)(6 39 11 32)(7 40 12 33)(15 50 22 43)(16 51 23 44)(17 52 24 45)(18 53 25 46)(19 54 26 47)(20 55 27 48)(21 56 28 49)(57 92 64 85)(58 93 65 86)(59 94 66 87)(60 95 67 88)(61 96 68 89)(62 97 69 90)(63 98 70 91)(71 106 78 99)(72 107 79 100)(73 108 80 101)(74 109 81 102)(75 110 82 103)(76 111 83 104)(77 112 84 105)
(1 83 13 76)(2 84 14 77)(3 78 8 71)(4 79 9 72)(5 80 10 73)(6 81 11 74)(7 82 12 75)(15 57 22 64)(16 58 23 65)(17 59 24 66)(18 60 25 67)(19 61 26 68)(20 62 27 69)(21 63 28 70)(29 99 36 106)(30 100 37 107)(31 101 38 108)(32 102 39 109)(33 103 40 110)(34 104 41 111)(35 105 42 112)(43 92 50 85)(44 93 51 86)(45 94 52 87)(46 95 53 88)(47 96 54 89)(48 97 55 90)(49 98 56 91)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63)(64 65 66 67 68 69 70)(71 72 73 74 75 76 77)(78 79 80 81 82 83 84)(85 86 87 88 89 90 91)(92 93 94 95 96 97 98)(99 100 101 102 103 104 105)(106 107 108 109 110 111 112)
(1 61)(2 60)(3 59)(4 58)(5 57)(6 63)(7 62)(8 66)(9 65)(10 64)(11 70)(12 69)(13 68)(14 67)(15 73)(16 72)(17 71)(18 77)(19 76)(20 75)(21 74)(22 80)(23 79)(24 78)(25 84)(26 83)(27 82)(28 81)(29 87)(30 86)(31 85)(32 91)(33 90)(34 89)(35 88)(36 94)(37 93)(38 92)(39 98)(40 97)(41 96)(42 95)(43 101)(44 100)(45 99)(46 105)(47 104)(48 103)(49 102)(50 108)(51 107)(52 106)(53 112)(54 111)(55 110)(56 109)

G:=sub<Sym(112)| (1,62)(2,63)(3,57)(4,58)(5,59)(6,60)(7,61)(8,64)(9,65)(10,66)(11,67)(12,68)(13,69)(14,70)(15,71)(16,72)(17,73)(18,74)(19,75)(20,76)(21,77)(22,78)(23,79)(24,80)(25,81)(26,82)(27,83)(28,84)(29,85)(30,86)(31,87)(32,88)(33,89)(34,90)(35,91)(36,92)(37,93)(38,94)(39,95)(40,96)(41,97)(42,98)(43,99)(44,100)(45,101)(46,102)(47,103)(48,104)(49,105)(50,106)(51,107)(52,108)(53,109)(54,110)(55,111)(56,112), (1,41,13,34)(2,42,14,35)(3,36,8,29)(4,37,9,30)(5,38,10,31)(6,39,11,32)(7,40,12,33)(15,50,22,43)(16,51,23,44)(17,52,24,45)(18,53,25,46)(19,54,26,47)(20,55,27,48)(21,56,28,49)(57,92,64,85)(58,93,65,86)(59,94,66,87)(60,95,67,88)(61,96,68,89)(62,97,69,90)(63,98,70,91)(71,106,78,99)(72,107,79,100)(73,108,80,101)(74,109,81,102)(75,110,82,103)(76,111,83,104)(77,112,84,105), (1,83,13,76)(2,84,14,77)(3,78,8,71)(4,79,9,72)(5,80,10,73)(6,81,11,74)(7,82,12,75)(15,57,22,64)(16,58,23,65)(17,59,24,66)(18,60,25,67)(19,61,26,68)(20,62,27,69)(21,63,28,70)(29,99,36,106)(30,100,37,107)(31,101,38,108)(32,102,39,109)(33,103,40,110)(34,104,41,111)(35,105,42,112)(43,92,50,85)(44,93,51,86)(45,94,52,87)(46,95,53,88)(47,96,54,89)(48,97,55,90)(49,98,56,91), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112), (1,61)(2,60)(3,59)(4,58)(5,57)(6,63)(7,62)(8,66)(9,65)(10,64)(11,70)(12,69)(13,68)(14,67)(15,73)(16,72)(17,71)(18,77)(19,76)(20,75)(21,74)(22,80)(23,79)(24,78)(25,84)(26,83)(27,82)(28,81)(29,87)(30,86)(31,85)(32,91)(33,90)(34,89)(35,88)(36,94)(37,93)(38,92)(39,98)(40,97)(41,96)(42,95)(43,101)(44,100)(45,99)(46,105)(47,104)(48,103)(49,102)(50,108)(51,107)(52,106)(53,112)(54,111)(55,110)(56,109)>;

G:=Group( (1,62)(2,63)(3,57)(4,58)(5,59)(6,60)(7,61)(8,64)(9,65)(10,66)(11,67)(12,68)(13,69)(14,70)(15,71)(16,72)(17,73)(18,74)(19,75)(20,76)(21,77)(22,78)(23,79)(24,80)(25,81)(26,82)(27,83)(28,84)(29,85)(30,86)(31,87)(32,88)(33,89)(34,90)(35,91)(36,92)(37,93)(38,94)(39,95)(40,96)(41,97)(42,98)(43,99)(44,100)(45,101)(46,102)(47,103)(48,104)(49,105)(50,106)(51,107)(52,108)(53,109)(54,110)(55,111)(56,112), (1,41,13,34)(2,42,14,35)(3,36,8,29)(4,37,9,30)(5,38,10,31)(6,39,11,32)(7,40,12,33)(15,50,22,43)(16,51,23,44)(17,52,24,45)(18,53,25,46)(19,54,26,47)(20,55,27,48)(21,56,28,49)(57,92,64,85)(58,93,65,86)(59,94,66,87)(60,95,67,88)(61,96,68,89)(62,97,69,90)(63,98,70,91)(71,106,78,99)(72,107,79,100)(73,108,80,101)(74,109,81,102)(75,110,82,103)(76,111,83,104)(77,112,84,105), (1,83,13,76)(2,84,14,77)(3,78,8,71)(4,79,9,72)(5,80,10,73)(6,81,11,74)(7,82,12,75)(15,57,22,64)(16,58,23,65)(17,59,24,66)(18,60,25,67)(19,61,26,68)(20,62,27,69)(21,63,28,70)(29,99,36,106)(30,100,37,107)(31,101,38,108)(32,102,39,109)(33,103,40,110)(34,104,41,111)(35,105,42,112)(43,92,50,85)(44,93,51,86)(45,94,52,87)(46,95,53,88)(47,96,54,89)(48,97,55,90)(49,98,56,91), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112), (1,61)(2,60)(3,59)(4,58)(5,57)(6,63)(7,62)(8,66)(9,65)(10,64)(11,70)(12,69)(13,68)(14,67)(15,73)(16,72)(17,71)(18,77)(19,76)(20,75)(21,74)(22,80)(23,79)(24,78)(25,84)(26,83)(27,82)(28,81)(29,87)(30,86)(31,85)(32,91)(33,90)(34,89)(35,88)(36,94)(37,93)(38,92)(39,98)(40,97)(41,96)(42,95)(43,101)(44,100)(45,99)(46,105)(47,104)(48,103)(49,102)(50,108)(51,107)(52,106)(53,112)(54,111)(55,110)(56,109) );

G=PermutationGroup([[(1,62),(2,63),(3,57),(4,58),(5,59),(6,60),(7,61),(8,64),(9,65),(10,66),(11,67),(12,68),(13,69),(14,70),(15,71),(16,72),(17,73),(18,74),(19,75),(20,76),(21,77),(22,78),(23,79),(24,80),(25,81),(26,82),(27,83),(28,84),(29,85),(30,86),(31,87),(32,88),(33,89),(34,90),(35,91),(36,92),(37,93),(38,94),(39,95),(40,96),(41,97),(42,98),(43,99),(44,100),(45,101),(46,102),(47,103),(48,104),(49,105),(50,106),(51,107),(52,108),(53,109),(54,110),(55,111),(56,112)], [(1,41,13,34),(2,42,14,35),(3,36,8,29),(4,37,9,30),(5,38,10,31),(6,39,11,32),(7,40,12,33),(15,50,22,43),(16,51,23,44),(17,52,24,45),(18,53,25,46),(19,54,26,47),(20,55,27,48),(21,56,28,49),(57,92,64,85),(58,93,65,86),(59,94,66,87),(60,95,67,88),(61,96,68,89),(62,97,69,90),(63,98,70,91),(71,106,78,99),(72,107,79,100),(73,108,80,101),(74,109,81,102),(75,110,82,103),(76,111,83,104),(77,112,84,105)], [(1,83,13,76),(2,84,14,77),(3,78,8,71),(4,79,9,72),(5,80,10,73),(6,81,11,74),(7,82,12,75),(15,57,22,64),(16,58,23,65),(17,59,24,66),(18,60,25,67),(19,61,26,68),(20,62,27,69),(21,63,28,70),(29,99,36,106),(30,100,37,107),(31,101,38,108),(32,102,39,109),(33,103,40,110),(34,104,41,111),(35,105,42,112),(43,92,50,85),(44,93,51,86),(45,94,52,87),(46,95,53,88),(47,96,54,89),(48,97,55,90),(49,98,56,91)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63),(64,65,66,67,68,69,70),(71,72,73,74,75,76,77),(78,79,80,81,82,83,84),(85,86,87,88,89,90,91),(92,93,94,95,96,97,98),(99,100,101,102,103,104,105),(106,107,108,109,110,111,112)], [(1,61),(2,60),(3,59),(4,58),(5,57),(6,63),(7,62),(8,66),(9,65),(10,64),(11,70),(12,69),(13,68),(14,67),(15,73),(16,72),(17,71),(18,77),(19,76),(20,75),(21,74),(22,80),(23,79),(24,78),(25,84),(26,83),(27,82),(28,81),(29,87),(30,86),(31,85),(32,91),(33,90),(34,89),(35,88),(36,94),(37,93),(38,92),(39,98),(40,97),(41,96),(42,95),(43,101),(44,100),(45,99),(46,105),(47,104),(48,103),(49,102),(50,108),(51,107),(52,106),(53,112),(54,111),(55,110),(56,109)]])

C2×Q8×D7 is a maximal subgroup of
(Q8×D7)⋊C4  Q82D28  D144Q16  Dic147D4  D145Q16  C42.125D14  Q85D28  C14.162- 1+4  Dic1421D4  Dic1422D4  C42.141D14  Dic1410D4  C42.171D14  D288Q8  C14.1072- 1+4
C2×Q8×D7 is a maximal quotient of
C14.102+ 1+4  Dic1410Q8  C42.232D14  D2810Q8  (Q8×Dic7)⋊C2  C14.752- 1+4  Dic1421D4  C14.512+ 1+4  C14.1182+ 1+4  C14.522+ 1+4  Dic147Q8  C42.236D14  C42.148D14  D287Q8  Dic148Q8  Dic149Q8  D288Q8  C42.241D14  C42.174D14  D289Q8

50 conjugacy classes

class 1 2A2B2C2D2E2F2G4A···4F4G···4L7A7B7C14A···14I28A···28R
order122222224···44···477714···1428···28
size111177772···214···142222···24···4

50 irreducible representations

dim1111122224
type+++++-+++-
imageC1C2C2C2C2Q8D7D14D14Q8×D7
kernelC2×Q8×D7C2×Dic14C2×C4×D7Q8×D7Q8×C14D14C2×Q8C2×C4Q8C2
# reps13381439126

Matrix representation of C2×Q8×D7 in GL4(𝔽29) generated by

28000
02800
00280
00028
,
28000
02800
0001
00280
,
28000
02800
00120
00017
,
0100
281800
0010
0001
,
02800
28000
0010
0001
G:=sub<GL(4,GF(29))| [28,0,0,0,0,28,0,0,0,0,28,0,0,0,0,28],[28,0,0,0,0,28,0,0,0,0,0,28,0,0,1,0],[28,0,0,0,0,28,0,0,0,0,12,0,0,0,0,17],[0,28,0,0,1,18,0,0,0,0,1,0,0,0,0,1],[0,28,0,0,28,0,0,0,0,0,1,0,0,0,0,1] >;

C2×Q8×D7 in GAP, Magma, Sage, TeX

C_2\times Q_8\times D_7
% in TeX

G:=Group("C2xQ8xD7");
// GroupNames label

G:=SmallGroup(224,181);
// by ID

G=gap.SmallGroup(224,181);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-7,86,159,69,6917]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^4=d^7=e^2=1,c^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c^-1=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽