Copied to
clipboard

G = D46D14order 224 = 25·7

2nd semidirect product of D4 and D14 acting through Inn(D4)

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D46D14, C232D14, D288C22, C14.7C24, C712+ 1+4, C28.21C23, D14.3C23, Dic148C22, Dic7.4C23, (D4×D7)⋊4C2, (C2×D4)⋊7D7, (C2×C4)⋊3D14, C4○D285C2, (D4×C14)⋊7C2, D42D74C2, (C2×C28)⋊3C22, (C7×D4)⋊7C22, (C4×D7)⋊1C22, C7⋊D43C22, C2.8(C23×D7), (C2×C14).2C23, C4.21(C22×D7), (C22×C14)⋊5C22, (C2×Dic7)⋊4C22, (C22×D7)⋊3C22, C22.6(C22×D7), (C2×C7⋊D4)⋊11C2, SmallGroup(224,180)

Series: Derived Chief Lower central Upper central

C1C14 — D46D14
C1C7C14D14C22×D7D4×D7 — D46D14
C7C14 — D46D14
C1C2C2×D4

Generators and relations for D46D14
 G = < a,b,c,d | a4=b2=c14=d2=1, bab=cac-1=a-1, ad=da, cbc-1=dbd=a2b, dcd=c-1 >

Subgroups: 670 in 166 conjugacy classes, 85 normal (11 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C7, C2×C4, C2×C4, D4, D4, Q8, C23, C23, D7, C14, C14, C2×D4, C2×D4, C4○D4, Dic7, C28, D14, D14, C2×C14, C2×C14, C2×C14, 2+ 1+4, Dic14, C4×D7, D28, C2×Dic7, C7⋊D4, C2×C28, C7×D4, C22×D7, C22×C14, C4○D28, D4×D7, D42D7, C2×C7⋊D4, D4×C14, D46D14
Quotients: C1, C2, C22, C23, D7, C24, D14, 2+ 1+4, C22×D7, C23×D7, D46D14

Smallest permutation representation of D46D14
On 56 points
Generators in S56
(1 51 12 44)(2 45 13 52)(3 53 14 46)(4 47 8 54)(5 55 9 48)(6 49 10 56)(7 43 11 50)(15 35 26 42)(16 29 27 36)(17 37 28 30)(18 31 22 38)(19 39 23 32)(20 33 24 40)(21 41 25 34)
(1 38)(2 32)(3 40)(4 34)(5 42)(6 36)(7 30)(8 41)(9 35)(10 29)(11 37)(12 31)(13 39)(14 33)(15 48)(16 56)(17 50)(18 44)(19 52)(20 46)(21 54)(22 51)(23 45)(24 53)(25 47)(26 55)(27 49)(28 43)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)
(1 7)(2 6)(3 5)(9 14)(10 13)(11 12)(15 24)(16 23)(17 22)(18 28)(19 27)(20 26)(21 25)(29 32)(30 31)(33 42)(34 41)(35 40)(36 39)(37 38)(43 51)(44 50)(45 49)(46 48)(52 56)(53 55)

G:=sub<Sym(56)| (1,51,12,44)(2,45,13,52)(3,53,14,46)(4,47,8,54)(5,55,9,48)(6,49,10,56)(7,43,11,50)(15,35,26,42)(16,29,27,36)(17,37,28,30)(18,31,22,38)(19,39,23,32)(20,33,24,40)(21,41,25,34), (1,38)(2,32)(3,40)(4,34)(5,42)(6,36)(7,30)(8,41)(9,35)(10,29)(11,37)(12,31)(13,39)(14,33)(15,48)(16,56)(17,50)(18,44)(19,52)(20,46)(21,54)(22,51)(23,45)(24,53)(25,47)(26,55)(27,49)(28,43), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56), (1,7)(2,6)(3,5)(9,14)(10,13)(11,12)(15,24)(16,23)(17,22)(18,28)(19,27)(20,26)(21,25)(29,32)(30,31)(33,42)(34,41)(35,40)(36,39)(37,38)(43,51)(44,50)(45,49)(46,48)(52,56)(53,55)>;

G:=Group( (1,51,12,44)(2,45,13,52)(3,53,14,46)(4,47,8,54)(5,55,9,48)(6,49,10,56)(7,43,11,50)(15,35,26,42)(16,29,27,36)(17,37,28,30)(18,31,22,38)(19,39,23,32)(20,33,24,40)(21,41,25,34), (1,38)(2,32)(3,40)(4,34)(5,42)(6,36)(7,30)(8,41)(9,35)(10,29)(11,37)(12,31)(13,39)(14,33)(15,48)(16,56)(17,50)(18,44)(19,52)(20,46)(21,54)(22,51)(23,45)(24,53)(25,47)(26,55)(27,49)(28,43), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56), (1,7)(2,6)(3,5)(9,14)(10,13)(11,12)(15,24)(16,23)(17,22)(18,28)(19,27)(20,26)(21,25)(29,32)(30,31)(33,42)(34,41)(35,40)(36,39)(37,38)(43,51)(44,50)(45,49)(46,48)(52,56)(53,55) );

G=PermutationGroup([[(1,51,12,44),(2,45,13,52),(3,53,14,46),(4,47,8,54),(5,55,9,48),(6,49,10,56),(7,43,11,50),(15,35,26,42),(16,29,27,36),(17,37,28,30),(18,31,22,38),(19,39,23,32),(20,33,24,40),(21,41,25,34)], [(1,38),(2,32),(3,40),(4,34),(5,42),(6,36),(7,30),(8,41),(9,35),(10,29),(11,37),(12,31),(13,39),(14,33),(15,48),(16,56),(17,50),(18,44),(19,52),(20,46),(21,54),(22,51),(23,45),(24,53),(25,47),(26,55),(27,49),(28,43)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56)], [(1,7),(2,6),(3,5),(9,14),(10,13),(11,12),(15,24),(16,23),(17,22),(18,28),(19,27),(20,26),(21,25),(29,32),(30,31),(33,42),(34,41),(35,40),(36,39),(37,38),(43,51),(44,50),(45,49),(46,48),(52,56),(53,55)]])

D46D14 is a maximal subgroup of
C23⋊D28  C23.5D28  D28.1D4  D281D4  C24⋊D14  C22⋊C4⋊D14  C425D14  D285D4  D813D14  D28.29D4  D85D14  D86D14  C14.C25  D7×2+ 1+4  D14.C24
D46D14 is a maximal quotient of
C232Dic14  C24.24D14  C24.27D14  C233D28  C24.30D14  C24.31D14  C14.72+ 1+4  C14.82+ 1+4  C14.2+ 1+4  C14.102+ 1+4  C14.112+ 1+4  C14.62- 1+4  D45Dic14  C42.104D14  C4211D14  C42.108D14  D45D28  C4216D14  C42.113D14  C42.114D14  C4217D14  C42.115D14  C42.116D14  C42.118D14  C24.32D14  C242D14  C243D14  C24.33D14  C24.34D14  C24.35D14  C244D14  C24.36D14  C14.682- 1+4  Dic1420D4  C14.342+ 1+4  C14.352+ 1+4  C14.712- 1+4  C14.372+ 1+4  C14.382+ 1+4  C14.722- 1+4  C14.402+ 1+4  D2820D4  C14.422+ 1+4  C14.432+ 1+4  C14.442+ 1+4  C14.452+ 1+4  C14.462+ 1+4  C14.472+ 1+4  C14.482+ 1+4  C14.492+ 1+4  C14.752- 1+4  C14.512+ 1+4  C14.522+ 1+4  C14.532+ 1+4  C14.202- 1+4  C14.222- 1+4  C14.562+ 1+4  C14.572+ 1+4  C14.582+ 1+4  C14.262- 1+4  C14.602+ 1+4  C14.612+ 1+4  C14.622+ 1+4  C14.832- 1+4  C14.642+ 1+4  C14.842- 1+4  C14.662+ 1+4  C14.672+ 1+4  C14.682+ 1+4  C14.862- 1+4  C42.137D14  C42.138D14  C42.140D14  C4220D14  C4221D14  C4222D14  C42.145D14  C42.166D14  C4226D14  D2811D4  Dic1411D4  C42.168D14  C4228D14  Dic149Q8  C42.174D14  D289Q8  C42.178D14  C42.179D14  C42.180D14  C24.38D14  D4×C7⋊D4  C247D14  C24.41D14  C24.42D14

47 conjugacy classes

class 1 2A2B···2F2G2H2I2J4A4B4C4D4E4F7A7B7C14A···14I14J···14U28A···28F
order122···2222244444477714···1414···1428···28
size112···21414141422141414142222···24···44···4

47 irreducible representations

dim111111222244
type+++++++++++
imageC1C2C2C2C2C2D7D14D14D142+ 1+4D46D14
kernelD46D14C4○D28D4×D7D42D7C2×C7⋊D4D4×C14C2×D4C2×C4D4C23C7C1
# reps1244413312616

Matrix representation of D46D14 in GL4(𝔽29) generated by

1324024
1324136
1801125
21211610
,
0101
0100
327283
12800
,
21211117
8261922
00011
002111
,
01275
10275
00285
0001
G:=sub<GL(4,GF(29))| [13,13,18,21,24,24,0,21,0,13,11,16,24,6,25,10],[0,0,3,1,1,1,27,28,0,0,28,0,1,0,3,0],[21,8,0,0,21,26,0,0,11,19,0,21,17,22,11,11],[0,1,0,0,1,0,0,0,27,27,28,0,5,5,5,1] >;

D46D14 in GAP, Magma, Sage, TeX

D_4\rtimes_6D_{14}
% in TeX

G:=Group("D4:6D14");
// GroupNames label

G:=SmallGroup(224,180);
// by ID

G=gap.SmallGroup(224,180);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-7,188,579,6917]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=c^14=d^2=1,b*a*b=c*a*c^-1=a^-1,a*d=d*a,c*b*c^-1=d*b*d=a^2*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽