Copied to
clipboard

G = C7×C4.D4order 224 = 25·7

Direct product of C7 and C4.D4

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: C7×C4.D4, C23.C28, C28.58D4, M4(2)⋊3C14, C4.9(C7×D4), (D4×C14).8C2, (C2×D4).2C14, (C7×M4(2))⋊9C2, C22.3(C2×C28), (C22×C14).1C4, (C2×C28).59C22, C14.22(C22⋊C4), (C2×C4).1(C2×C14), C2.4(C7×C22⋊C4), (C2×C14).20(C2×C4), SmallGroup(224,49)

Series: Derived Chief Lower central Upper central

C1C22 — C7×C4.D4
C1C2C4C2×C4C2×C28C7×M4(2) — C7×C4.D4
C1C2C22 — C7×C4.D4
C1C14C2×C28 — C7×C4.D4

Generators and relations for C7×C4.D4
 G = < a,b,c,d | a7=b4=1, c4=b2, d2=b, ab=ba, ac=ca, ad=da, cbc-1=b-1, bd=db, dcd-1=b-1c3 >

2C2
4C2
4C2
2C22
2C22
4C22
4C22
2C14
4C14
4C14
2D4
2C8
2D4
2C8
2C2×C14
2C2×C14
4C2×C14
4C2×C14
2C7×D4
2C56
2C56
2C7×D4

Smallest permutation representation of C7×C4.D4
On 56 points
Generators in S56
(1 27 17 53 16 45 35)(2 28 18 54 9 46 36)(3 29 19 55 10 47 37)(4 30 20 56 11 48 38)(5 31 21 49 12 41 39)(6 32 22 50 13 42 40)(7 25 23 51 14 43 33)(8 26 24 52 15 44 34)
(1 3 5 7)(2 8 6 4)(9 15 13 11)(10 12 14 16)(17 19 21 23)(18 24 22 20)(25 27 29 31)(26 32 30 28)(33 35 37 39)(34 40 38 36)(41 43 45 47)(42 48 46 44)(49 51 53 55)(50 56 54 52)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)
(1 4 3 2 5 8 7 6)(9 12 15 14 13 16 11 10)(17 20 19 18 21 24 23 22)(25 32 27 30 29 28 31 26)(33 40 35 38 37 36 39 34)(41 44 43 42 45 48 47 46)(49 52 51 50 53 56 55 54)

G:=sub<Sym(56)| (1,27,17,53,16,45,35)(2,28,18,54,9,46,36)(3,29,19,55,10,47,37)(4,30,20,56,11,48,38)(5,31,21,49,12,41,39)(6,32,22,50,13,42,40)(7,25,23,51,14,43,33)(8,26,24,52,15,44,34), (1,3,5,7)(2,8,6,4)(9,15,13,11)(10,12,14,16)(17,19,21,23)(18,24,22,20)(25,27,29,31)(26,32,30,28)(33,35,37,39)(34,40,38,36)(41,43,45,47)(42,48,46,44)(49,51,53,55)(50,56,54,52), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56), (1,4,3,2,5,8,7,6)(9,12,15,14,13,16,11,10)(17,20,19,18,21,24,23,22)(25,32,27,30,29,28,31,26)(33,40,35,38,37,36,39,34)(41,44,43,42,45,48,47,46)(49,52,51,50,53,56,55,54)>;

G:=Group( (1,27,17,53,16,45,35)(2,28,18,54,9,46,36)(3,29,19,55,10,47,37)(4,30,20,56,11,48,38)(5,31,21,49,12,41,39)(6,32,22,50,13,42,40)(7,25,23,51,14,43,33)(8,26,24,52,15,44,34), (1,3,5,7)(2,8,6,4)(9,15,13,11)(10,12,14,16)(17,19,21,23)(18,24,22,20)(25,27,29,31)(26,32,30,28)(33,35,37,39)(34,40,38,36)(41,43,45,47)(42,48,46,44)(49,51,53,55)(50,56,54,52), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56), (1,4,3,2,5,8,7,6)(9,12,15,14,13,16,11,10)(17,20,19,18,21,24,23,22)(25,32,27,30,29,28,31,26)(33,40,35,38,37,36,39,34)(41,44,43,42,45,48,47,46)(49,52,51,50,53,56,55,54) );

G=PermutationGroup([[(1,27,17,53,16,45,35),(2,28,18,54,9,46,36),(3,29,19,55,10,47,37),(4,30,20,56,11,48,38),(5,31,21,49,12,41,39),(6,32,22,50,13,42,40),(7,25,23,51,14,43,33),(8,26,24,52,15,44,34)], [(1,3,5,7),(2,8,6,4),(9,15,13,11),(10,12,14,16),(17,19,21,23),(18,24,22,20),(25,27,29,31),(26,32,30,28),(33,35,37,39),(34,40,38,36),(41,43,45,47),(42,48,46,44),(49,51,53,55),(50,56,54,52)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56)], [(1,4,3,2,5,8,7,6),(9,12,15,14,13,16,11,10),(17,20,19,18,21,24,23,22),(25,32,27,30,29,28,31,26),(33,40,35,38,37,36,39,34),(41,44,43,42,45,48,47,46),(49,52,51,50,53,56,55,54)]])

C7×C4.D4 is a maximal subgroup of   C23.3D28  C23.4D28  M4(2).19D14  D28.1D4  D281D4  D28.2D4  D28.3D4

77 conjugacy classes

class 1 2A2B2C2D4A4B7A···7F8A8B8C8D14A···14F14G···14L14M···14X28A···28L56A···56X
order12222447···7888814···1414···1414···1428···2856···56
size11244221···144441···12···24···42···24···4

77 irreducible representations

dim111111112244
type+++++
imageC1C2C2C4C7C14C14C28D4C7×D4C4.D4C7×C4.D4
kernelC7×C4.D4C7×M4(2)D4×C14C22×C14C4.D4M4(2)C2×D4C23C28C4C7C1
# reps121461262421216

Matrix representation of C7×C4.D4 in GL6(𝔽113)

10600000
01060000
001000
000100
000010
000001
,
11200000
01120000
000100
00112000
000001
00001120
,
100000
1121120000
000001
000010
00112000
000100
,
120000
1121120000
000010
000001
000100
00112000

G:=sub<GL(6,GF(113))| [106,0,0,0,0,0,0,106,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[112,0,0,0,0,0,0,112,0,0,0,0,0,0,0,112,0,0,0,0,1,0,0,0,0,0,0,0,0,112,0,0,0,0,1,0],[1,112,0,0,0,0,0,112,0,0,0,0,0,0,0,0,112,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0],[1,112,0,0,0,0,2,112,0,0,0,0,0,0,0,0,0,112,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,0] >;

C7×C4.D4 in GAP, Magma, Sage, TeX

C_7\times C_4.D_4
% in TeX

G:=Group("C7xC4.D4");
// GroupNames label

G:=SmallGroup(224,49);
// by ID

G=gap.SmallGroup(224,49);
# by ID

G:=PCGroup([6,-2,-2,-7,-2,-2,-2,336,361,3363,2530,88]);
// Polycyclic

G:=Group<a,b,c,d|a^7=b^4=1,c^4=b^2,d^2=b,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=b^-1,b*d=d*b,d*c*d^-1=b^-1*c^3>;
// generators/relations

Export

Subgroup lattice of C7×C4.D4 in TeX

׿
×
𝔽