Copied to
clipboard

G = C7×C4.10D4order 224 = 25·7

Direct product of C7 and C4.10D4

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: C7×C4.10D4, C28.59D4, M4(2).1C14, (C2×C4).C28, (C2×C28).2C4, C4.10(C7×D4), (C2×Q8).1C14, (Q8×C14).6C2, C22.4(C2×C28), (C2×C28).60C22, (C7×M4(2)).3C2, C14.23(C22⋊C4), (C2×C4).2(C2×C14), C2.5(C7×C22⋊C4), (C2×C14).21(C2×C4), SmallGroup(224,50)

Series: Derived Chief Lower central Upper central

C1C22 — C7×C4.10D4
C1C2C4C2×C4C2×C28C7×M4(2) — C7×C4.10D4
C1C2C22 — C7×C4.10D4
C1C14C2×C28 — C7×C4.10D4

Generators and relations for C7×C4.10D4
 G = < a,b,c,d | a7=b4=1, c4=b2, d2=cbc-1=b-1, ab=ba, ac=ca, ad=da, bd=db, dcd-1=b-1c3 >

2C2
2C4
2C4
2C14
2C8
2Q8
2C8
2Q8
2C28
2C28
2C56
2C56
2C7×Q8
2C7×Q8

Smallest permutation representation of C7×C4.10D4
On 112 points
Generators in S112
(1 31 47 79 95 23 39)(2 32 48 80 96 24 40)(3 25 41 73 89 17 33)(4 26 42 74 90 18 34)(5 27 43 75 91 19 35)(6 28 44 76 92 20 36)(7 29 45 77 93 21 37)(8 30 46 78 94 22 38)(9 106 66 50 82 98 62)(10 107 67 51 83 99 63)(11 108 68 52 84 100 64)(12 109 69 53 85 101 57)(13 110 70 54 86 102 58)(14 111 71 55 87 103 59)(15 112 72 56 88 104 60)(16 105 65 49 81 97 61)
(1 3 5 7)(2 8 6 4)(9 15 13 11)(10 12 14 16)(17 19 21 23)(18 24 22 20)(25 27 29 31)(26 32 30 28)(33 35 37 39)(34 40 38 36)(41 43 45 47)(42 48 46 44)(49 51 53 55)(50 56 54 52)(57 59 61 63)(58 64 62 60)(65 67 69 71)(66 72 70 68)(73 75 77 79)(74 80 78 76)(81 83 85 87)(82 88 86 84)(89 91 93 95)(90 96 94 92)(97 99 101 103)(98 104 102 100)(105 107 109 111)(106 112 110 108)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)
(1 100 7 102 5 104 3 98)(2 101 4 99 6 97 8 103)(9 47 11 45 13 43 15 41)(10 44 16 46 14 48 12 42)(17 50 23 52 21 54 19 56)(18 51 20 49 22 55 24 53)(25 62 31 64 29 58 27 60)(26 63 28 61 30 59 32 57)(33 82 39 84 37 86 35 88)(34 83 36 81 38 87 40 85)(65 94 71 96 69 90 67 92)(66 95 68 93 70 91 72 89)(73 106 79 108 77 110 75 112)(74 107 76 105 78 111 80 109)

G:=sub<Sym(112)| (1,31,47,79,95,23,39)(2,32,48,80,96,24,40)(3,25,41,73,89,17,33)(4,26,42,74,90,18,34)(5,27,43,75,91,19,35)(6,28,44,76,92,20,36)(7,29,45,77,93,21,37)(8,30,46,78,94,22,38)(9,106,66,50,82,98,62)(10,107,67,51,83,99,63)(11,108,68,52,84,100,64)(12,109,69,53,85,101,57)(13,110,70,54,86,102,58)(14,111,71,55,87,103,59)(15,112,72,56,88,104,60)(16,105,65,49,81,97,61), (1,3,5,7)(2,8,6,4)(9,15,13,11)(10,12,14,16)(17,19,21,23)(18,24,22,20)(25,27,29,31)(26,32,30,28)(33,35,37,39)(34,40,38,36)(41,43,45,47)(42,48,46,44)(49,51,53,55)(50,56,54,52)(57,59,61,63)(58,64,62,60)(65,67,69,71)(66,72,70,68)(73,75,77,79)(74,80,78,76)(81,83,85,87)(82,88,86,84)(89,91,93,95)(90,96,94,92)(97,99,101,103)(98,104,102,100)(105,107,109,111)(106,112,110,108), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112), (1,100,7,102,5,104,3,98)(2,101,4,99,6,97,8,103)(9,47,11,45,13,43,15,41)(10,44,16,46,14,48,12,42)(17,50,23,52,21,54,19,56)(18,51,20,49,22,55,24,53)(25,62,31,64,29,58,27,60)(26,63,28,61,30,59,32,57)(33,82,39,84,37,86,35,88)(34,83,36,81,38,87,40,85)(65,94,71,96,69,90,67,92)(66,95,68,93,70,91,72,89)(73,106,79,108,77,110,75,112)(74,107,76,105,78,111,80,109)>;

G:=Group( (1,31,47,79,95,23,39)(2,32,48,80,96,24,40)(3,25,41,73,89,17,33)(4,26,42,74,90,18,34)(5,27,43,75,91,19,35)(6,28,44,76,92,20,36)(7,29,45,77,93,21,37)(8,30,46,78,94,22,38)(9,106,66,50,82,98,62)(10,107,67,51,83,99,63)(11,108,68,52,84,100,64)(12,109,69,53,85,101,57)(13,110,70,54,86,102,58)(14,111,71,55,87,103,59)(15,112,72,56,88,104,60)(16,105,65,49,81,97,61), (1,3,5,7)(2,8,6,4)(9,15,13,11)(10,12,14,16)(17,19,21,23)(18,24,22,20)(25,27,29,31)(26,32,30,28)(33,35,37,39)(34,40,38,36)(41,43,45,47)(42,48,46,44)(49,51,53,55)(50,56,54,52)(57,59,61,63)(58,64,62,60)(65,67,69,71)(66,72,70,68)(73,75,77,79)(74,80,78,76)(81,83,85,87)(82,88,86,84)(89,91,93,95)(90,96,94,92)(97,99,101,103)(98,104,102,100)(105,107,109,111)(106,112,110,108), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112), (1,100,7,102,5,104,3,98)(2,101,4,99,6,97,8,103)(9,47,11,45,13,43,15,41)(10,44,16,46,14,48,12,42)(17,50,23,52,21,54,19,56)(18,51,20,49,22,55,24,53)(25,62,31,64,29,58,27,60)(26,63,28,61,30,59,32,57)(33,82,39,84,37,86,35,88)(34,83,36,81,38,87,40,85)(65,94,71,96,69,90,67,92)(66,95,68,93,70,91,72,89)(73,106,79,108,77,110,75,112)(74,107,76,105,78,111,80,109) );

G=PermutationGroup([[(1,31,47,79,95,23,39),(2,32,48,80,96,24,40),(3,25,41,73,89,17,33),(4,26,42,74,90,18,34),(5,27,43,75,91,19,35),(6,28,44,76,92,20,36),(7,29,45,77,93,21,37),(8,30,46,78,94,22,38),(9,106,66,50,82,98,62),(10,107,67,51,83,99,63),(11,108,68,52,84,100,64),(12,109,69,53,85,101,57),(13,110,70,54,86,102,58),(14,111,71,55,87,103,59),(15,112,72,56,88,104,60),(16,105,65,49,81,97,61)], [(1,3,5,7),(2,8,6,4),(9,15,13,11),(10,12,14,16),(17,19,21,23),(18,24,22,20),(25,27,29,31),(26,32,30,28),(33,35,37,39),(34,40,38,36),(41,43,45,47),(42,48,46,44),(49,51,53,55),(50,56,54,52),(57,59,61,63),(58,64,62,60),(65,67,69,71),(66,72,70,68),(73,75,77,79),(74,80,78,76),(81,83,85,87),(82,88,86,84),(89,91,93,95),(90,96,94,92),(97,99,101,103),(98,104,102,100),(105,107,109,111),(106,112,110,108)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112)], [(1,100,7,102,5,104,3,98),(2,101,4,99,6,97,8,103),(9,47,11,45,13,43,15,41),(10,44,16,46,14,48,12,42),(17,50,23,52,21,54,19,56),(18,51,20,49,22,55,24,53),(25,62,31,64,29,58,27,60),(26,63,28,61,30,59,32,57),(33,82,39,84,37,86,35,88),(34,83,36,81,38,87,40,85),(65,94,71,96,69,90,67,92),(66,95,68,93,70,91,72,89),(73,106,79,108,77,110,75,112),(74,107,76,105,78,111,80,109)]])

C7×C4.10D4 is a maximal subgroup of   (C2×C4).D28  (C2×Q8).D14  M4(2).21D14  D28.4D4  D28.5D4  D28.6D4  D28.7D4

77 conjugacy classes

class 1 2A2B4A4B4C4D7A···7F8A8B8C8D14A···14F14G···14L28A···28L28M···28X56A···56X
order12244447···7888814···1414···1428···2828···2856···56
size11222441···144441···12···22···24···44···4

77 irreducible representations

dim111111112244
type++++-
imageC1C2C2C4C7C14C14C28D4C7×D4C4.10D4C7×C4.10D4
kernelC7×C4.10D4C7×M4(2)Q8×C14C2×C28C4.10D4M4(2)C2×Q8C2×C4C28C4C7C1
# reps121461262421216

Matrix representation of C7×C4.10D4 in GL4(𝔽113) generated by

28000
02800
00280
00028
,
0100
112000
1081030112
1010810
,
108101110
0980111
69695103
5756015
,
5562223
1592391
33602
11110011052
G:=sub<GL(4,GF(113))| [28,0,0,0,0,28,0,0,0,0,28,0,0,0,0,28],[0,112,108,10,1,0,103,108,0,0,0,1,0,0,112,0],[108,0,69,57,10,98,69,56,111,0,5,0,0,111,103,15],[55,1,3,111,6,59,3,100,22,23,60,110,23,91,2,52] >;

C7×C4.10D4 in GAP, Magma, Sage, TeX

C_7\times C_4._{10}D_4
% in TeX

G:=Group("C7xC4.10D4");
// GroupNames label

G:=SmallGroup(224,50);
// by ID

G=gap.SmallGroup(224,50);
# by ID

G:=PCGroup([6,-2,-2,-7,-2,-2,-2,336,361,679,3363,2530,88]);
// Polycyclic

G:=Group<a,b,c,d|a^7=b^4=1,c^4=b^2,d^2=c*b*c^-1=b^-1,a*b=b*a,a*c=c*a,a*d=d*a,b*d=d*b,d*c*d^-1=b^-1*c^3>;
// generators/relations

Export

Subgroup lattice of C7×C4.10D4 in TeX

׿
×
𝔽