Copied to
clipboard

G = C14×C3⋊S3order 252 = 22·32·7

Direct product of C14 and C3⋊S3

direct product, metabelian, supersoluble, monomial, A-group

Aliases: C14×C3⋊S3, C423S3, C218D6, C6⋊(S3×C7), C32(S3×C14), (C3×C42)⋊5C2, (C3×C6)⋊2C14, C323(C2×C14), (C3×C21)⋊10C22, SmallGroup(252,44)

Series: Derived Chief Lower central Upper central

C1C32 — C14×C3⋊S3
C1C3C32C3×C21C7×C3⋊S3 — C14×C3⋊S3
C32 — C14×C3⋊S3
C1C14

Generators and relations for C14×C3⋊S3
 G = < a,b,c,d | a14=b3=c3=d2=1, ab=ba, ac=ca, ad=da, bc=cb, dbd=b-1, dcd=c-1 >

Subgroups: 156 in 60 conjugacy classes, 30 normal (10 characteristic)
C1, C2, C2, C3, C22, S3, C6, C7, C32, D6, C14, C14, C3⋊S3, C3×C6, C21, C2×C14, C2×C3⋊S3, S3×C7, C42, C3×C21, S3×C14, C7×C3⋊S3, C3×C42, C14×C3⋊S3
Quotients: C1, C2, C22, S3, C7, D6, C14, C3⋊S3, C2×C14, C2×C3⋊S3, S3×C7, S3×C14, C7×C3⋊S3, C14×C3⋊S3

Smallest permutation representation of C14×C3⋊S3
On 126 points
Generators in S126
(1 2 3 4 5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126)
(1 21 56)(2 22 43)(3 23 44)(4 24 45)(5 25 46)(6 26 47)(7 27 48)(8 28 49)(9 15 50)(10 16 51)(11 17 52)(12 18 53)(13 19 54)(14 20 55)(29 60 104)(30 61 105)(31 62 106)(32 63 107)(33 64 108)(34 65 109)(35 66 110)(36 67 111)(37 68 112)(38 69 99)(39 70 100)(40 57 101)(41 58 102)(42 59 103)(71 92 121)(72 93 122)(73 94 123)(74 95 124)(75 96 125)(76 97 126)(77 98 113)(78 85 114)(79 86 115)(80 87 116)(81 88 117)(82 89 118)(83 90 119)(84 91 120)
(1 116 102)(2 117 103)(3 118 104)(4 119 105)(5 120 106)(6 121 107)(7 122 108)(8 123 109)(9 124 110)(10 125 111)(11 126 112)(12 113 99)(13 114 100)(14 115 101)(15 74 35)(16 75 36)(17 76 37)(18 77 38)(19 78 39)(20 79 40)(21 80 41)(22 81 42)(23 82 29)(24 83 30)(25 84 31)(26 71 32)(27 72 33)(28 73 34)(43 88 59)(44 89 60)(45 90 61)(46 91 62)(47 92 63)(48 93 64)(49 94 65)(50 95 66)(51 96 67)(52 97 68)(53 98 69)(54 85 70)(55 86 57)(56 87 58)
(15 50)(16 51)(17 52)(18 53)(19 54)(20 55)(21 56)(22 43)(23 44)(24 45)(25 46)(26 47)(27 48)(28 49)(29 89)(30 90)(31 91)(32 92)(33 93)(34 94)(35 95)(36 96)(37 97)(38 98)(39 85)(40 86)(41 87)(42 88)(57 79)(58 80)(59 81)(60 82)(61 83)(62 84)(63 71)(64 72)(65 73)(66 74)(67 75)(68 76)(69 77)(70 78)(99 113)(100 114)(101 115)(102 116)(103 117)(104 118)(105 119)(106 120)(107 121)(108 122)(109 123)(110 124)(111 125)(112 126)

G:=sub<Sym(126)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126), (1,21,56)(2,22,43)(3,23,44)(4,24,45)(5,25,46)(6,26,47)(7,27,48)(8,28,49)(9,15,50)(10,16,51)(11,17,52)(12,18,53)(13,19,54)(14,20,55)(29,60,104)(30,61,105)(31,62,106)(32,63,107)(33,64,108)(34,65,109)(35,66,110)(36,67,111)(37,68,112)(38,69,99)(39,70,100)(40,57,101)(41,58,102)(42,59,103)(71,92,121)(72,93,122)(73,94,123)(74,95,124)(75,96,125)(76,97,126)(77,98,113)(78,85,114)(79,86,115)(80,87,116)(81,88,117)(82,89,118)(83,90,119)(84,91,120), (1,116,102)(2,117,103)(3,118,104)(4,119,105)(5,120,106)(6,121,107)(7,122,108)(8,123,109)(9,124,110)(10,125,111)(11,126,112)(12,113,99)(13,114,100)(14,115,101)(15,74,35)(16,75,36)(17,76,37)(18,77,38)(19,78,39)(20,79,40)(21,80,41)(22,81,42)(23,82,29)(24,83,30)(25,84,31)(26,71,32)(27,72,33)(28,73,34)(43,88,59)(44,89,60)(45,90,61)(46,91,62)(47,92,63)(48,93,64)(49,94,65)(50,95,66)(51,96,67)(52,97,68)(53,98,69)(54,85,70)(55,86,57)(56,87,58), (15,50)(16,51)(17,52)(18,53)(19,54)(20,55)(21,56)(22,43)(23,44)(24,45)(25,46)(26,47)(27,48)(28,49)(29,89)(30,90)(31,91)(32,92)(33,93)(34,94)(35,95)(36,96)(37,97)(38,98)(39,85)(40,86)(41,87)(42,88)(57,79)(58,80)(59,81)(60,82)(61,83)(62,84)(63,71)(64,72)(65,73)(66,74)(67,75)(68,76)(69,77)(70,78)(99,113)(100,114)(101,115)(102,116)(103,117)(104,118)(105,119)(106,120)(107,121)(108,122)(109,123)(110,124)(111,125)(112,126)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126), (1,21,56)(2,22,43)(3,23,44)(4,24,45)(5,25,46)(6,26,47)(7,27,48)(8,28,49)(9,15,50)(10,16,51)(11,17,52)(12,18,53)(13,19,54)(14,20,55)(29,60,104)(30,61,105)(31,62,106)(32,63,107)(33,64,108)(34,65,109)(35,66,110)(36,67,111)(37,68,112)(38,69,99)(39,70,100)(40,57,101)(41,58,102)(42,59,103)(71,92,121)(72,93,122)(73,94,123)(74,95,124)(75,96,125)(76,97,126)(77,98,113)(78,85,114)(79,86,115)(80,87,116)(81,88,117)(82,89,118)(83,90,119)(84,91,120), (1,116,102)(2,117,103)(3,118,104)(4,119,105)(5,120,106)(6,121,107)(7,122,108)(8,123,109)(9,124,110)(10,125,111)(11,126,112)(12,113,99)(13,114,100)(14,115,101)(15,74,35)(16,75,36)(17,76,37)(18,77,38)(19,78,39)(20,79,40)(21,80,41)(22,81,42)(23,82,29)(24,83,30)(25,84,31)(26,71,32)(27,72,33)(28,73,34)(43,88,59)(44,89,60)(45,90,61)(46,91,62)(47,92,63)(48,93,64)(49,94,65)(50,95,66)(51,96,67)(52,97,68)(53,98,69)(54,85,70)(55,86,57)(56,87,58), (15,50)(16,51)(17,52)(18,53)(19,54)(20,55)(21,56)(22,43)(23,44)(24,45)(25,46)(26,47)(27,48)(28,49)(29,89)(30,90)(31,91)(32,92)(33,93)(34,94)(35,95)(36,96)(37,97)(38,98)(39,85)(40,86)(41,87)(42,88)(57,79)(58,80)(59,81)(60,82)(61,83)(62,84)(63,71)(64,72)(65,73)(66,74)(67,75)(68,76)(69,77)(70,78)(99,113)(100,114)(101,115)(102,116)(103,117)(104,118)(105,119)(106,120)(107,121)(108,122)(109,123)(110,124)(111,125)(112,126) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126)], [(1,21,56),(2,22,43),(3,23,44),(4,24,45),(5,25,46),(6,26,47),(7,27,48),(8,28,49),(9,15,50),(10,16,51),(11,17,52),(12,18,53),(13,19,54),(14,20,55),(29,60,104),(30,61,105),(31,62,106),(32,63,107),(33,64,108),(34,65,109),(35,66,110),(36,67,111),(37,68,112),(38,69,99),(39,70,100),(40,57,101),(41,58,102),(42,59,103),(71,92,121),(72,93,122),(73,94,123),(74,95,124),(75,96,125),(76,97,126),(77,98,113),(78,85,114),(79,86,115),(80,87,116),(81,88,117),(82,89,118),(83,90,119),(84,91,120)], [(1,116,102),(2,117,103),(3,118,104),(4,119,105),(5,120,106),(6,121,107),(7,122,108),(8,123,109),(9,124,110),(10,125,111),(11,126,112),(12,113,99),(13,114,100),(14,115,101),(15,74,35),(16,75,36),(17,76,37),(18,77,38),(19,78,39),(20,79,40),(21,80,41),(22,81,42),(23,82,29),(24,83,30),(25,84,31),(26,71,32),(27,72,33),(28,73,34),(43,88,59),(44,89,60),(45,90,61),(46,91,62),(47,92,63),(48,93,64),(49,94,65),(50,95,66),(51,96,67),(52,97,68),(53,98,69),(54,85,70),(55,86,57),(56,87,58)], [(15,50),(16,51),(17,52),(18,53),(19,54),(20,55),(21,56),(22,43),(23,44),(24,45),(25,46),(26,47),(27,48),(28,49),(29,89),(30,90),(31,91),(32,92),(33,93),(34,94),(35,95),(36,96),(37,97),(38,98),(39,85),(40,86),(41,87),(42,88),(57,79),(58,80),(59,81),(60,82),(61,83),(62,84),(63,71),(64,72),(65,73),(66,74),(67,75),(68,76),(69,77),(70,78),(99,113),(100,114),(101,115),(102,116),(103,117),(104,118),(105,119),(106,120),(107,121),(108,122),(109,123),(110,124),(111,125),(112,126)]])

84 conjugacy classes

class 1 2A2B2C3A3B3C3D6A6B6C6D7A···7F14A···14F14G···14R21A···21X42A···42X
order1222333366667···714···1414···1421···2142···42
size1199222222221···11···19···92···22···2

84 irreducible representations

dim1111112222
type+++++
imageC1C2C2C7C14C14S3D6S3×C7S3×C14
kernelC14×C3⋊S3C7×C3⋊S3C3×C42C2×C3⋊S3C3⋊S3C3×C6C42C21C6C3
# reps1216126442424

Matrix representation of C14×C3⋊S3 in GL4(𝔽43) generated by

22000
02200
00110
00011
,
42100
42000
0001
004242
,
1000
0100
0001
004242
,
14200
04200
00042
00420
G:=sub<GL(4,GF(43))| [22,0,0,0,0,22,0,0,0,0,11,0,0,0,0,11],[42,42,0,0,1,0,0,0,0,0,0,42,0,0,1,42],[1,0,0,0,0,1,0,0,0,0,0,42,0,0,1,42],[1,0,0,0,42,42,0,0,0,0,0,42,0,0,42,0] >;

C14×C3⋊S3 in GAP, Magma, Sage, TeX

C_{14}\times C_3\rtimes S_3
% in TeX

G:=Group("C14xC3:S3");
// GroupNames label

G:=SmallGroup(252,44);
// by ID

G=gap.SmallGroup(252,44);
# by ID

G:=PCGroup([5,-2,-2,-7,-3,-3,1123,4204]);
// Polycyclic

G:=Group<a,b,c,d|a^14=b^3=c^3=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽