Copied to
clipboard

G = C2×C6×S4order 288 = 25·32

Direct product of C2×C6 and S4

direct product, non-abelian, soluble, monomial

Aliases: C2×C6×S4, C23⋊(S3×C6), A4⋊(C22×C6), C244(C3×S3), (C23×C6)⋊2S3, (C22×C6)⋊2D6, (C6×A4)⋊2C22, (C22×A4)⋊5C6, (C3×A4)⋊2C23, C22⋊(S3×C2×C6), (C2×A4)⋊(C2×C6), (A4×C2×C6)⋊5C2, (C2×C6)⋊2(C22×S3), SmallGroup(288,1033)

Series: Derived Chief Lower central Upper central

C1C22A4 — C2×C6×S4
C1C22A4C3×A4C3×S4C6×S4 — C2×C6×S4
A4 — C2×C6×S4
C1C2×C6

Generators and relations for C2×C6×S4
 G = < a,b,c,d,e,f | a2=b6=c2=d2=e3=f2=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, ece-1=fcf=cd=dc, ede-1=c, df=fd, fef=e-1 >

Subgroups: 890 in 272 conjugacy classes, 52 normal (14 characteristic)
C1, C2, C2, C3, C3, C4, C22, C22, S3, C6, C6, C2×C4, D4, C23, C23, C32, C12, A4, A4, D6, C2×C6, C2×C6, C22×C4, C2×D4, C24, C24, C3×S3, C3×C6, C2×C12, C3×D4, S4, C2×A4, C2×A4, C22×S3, C22×C6, C22×C6, C22×D4, C3×A4, S3×C6, C62, C22×C12, C6×D4, C2×S4, C22×A4, C22×A4, C23×C6, C23×C6, C3×S4, C6×A4, S3×C2×C6, D4×C2×C6, C22×S4, C6×S4, A4×C2×C6, C2×C6×S4
Quotients: C1, C2, C3, C22, S3, C6, C23, D6, C2×C6, C3×S3, S4, C22×S3, C22×C6, S3×C6, C2×S4, C3×S4, S3×C2×C6, C22×S4, C6×S4, C2×C6×S4

Smallest permutation representation of C2×C6×S4
On 36 points
Generators in S36
(1 24)(2 19)(3 20)(4 21)(5 22)(6 23)(7 13)(8 14)(9 15)(10 16)(11 17)(12 18)(25 31)(26 32)(27 33)(28 34)(29 35)(30 36)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)
(1 24)(2 19)(3 20)(4 21)(5 22)(6 23)(7 13)(8 14)(9 15)(10 16)(11 17)(12 18)
(7 13)(8 14)(9 15)(10 16)(11 17)(12 18)(25 31)(26 32)(27 33)(28 34)(29 35)(30 36)
(1 12 32)(2 7 33)(3 8 34)(4 9 35)(5 10 36)(6 11 31)(13 27 19)(14 28 20)(15 29 21)(16 30 22)(17 25 23)(18 26 24)
(1 24)(2 19)(3 20)(4 21)(5 22)(6 23)(7 27)(8 28)(9 29)(10 30)(11 25)(12 26)(13 33)(14 34)(15 35)(16 36)(17 31)(18 32)

G:=sub<Sym(36)| (1,24)(2,19)(3,20)(4,21)(5,22)(6,23)(7,13)(8,14)(9,15)(10,16)(11,17)(12,18)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36), (1,24)(2,19)(3,20)(4,21)(5,22)(6,23)(7,13)(8,14)(9,15)(10,16)(11,17)(12,18), (7,13)(8,14)(9,15)(10,16)(11,17)(12,18)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36), (1,12,32)(2,7,33)(3,8,34)(4,9,35)(5,10,36)(6,11,31)(13,27,19)(14,28,20)(15,29,21)(16,30,22)(17,25,23)(18,26,24), (1,24)(2,19)(3,20)(4,21)(5,22)(6,23)(7,27)(8,28)(9,29)(10,30)(11,25)(12,26)(13,33)(14,34)(15,35)(16,36)(17,31)(18,32)>;

G:=Group( (1,24)(2,19)(3,20)(4,21)(5,22)(6,23)(7,13)(8,14)(9,15)(10,16)(11,17)(12,18)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36), (1,24)(2,19)(3,20)(4,21)(5,22)(6,23)(7,13)(8,14)(9,15)(10,16)(11,17)(12,18), (7,13)(8,14)(9,15)(10,16)(11,17)(12,18)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36), (1,12,32)(2,7,33)(3,8,34)(4,9,35)(5,10,36)(6,11,31)(13,27,19)(14,28,20)(15,29,21)(16,30,22)(17,25,23)(18,26,24), (1,24)(2,19)(3,20)(4,21)(5,22)(6,23)(7,27)(8,28)(9,29)(10,30)(11,25)(12,26)(13,33)(14,34)(15,35)(16,36)(17,31)(18,32) );

G=PermutationGroup([[(1,24),(2,19),(3,20),(4,21),(5,22),(6,23),(7,13),(8,14),(9,15),(10,16),(11,17),(12,18),(25,31),(26,32),(27,33),(28,34),(29,35),(30,36)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36)], [(1,24),(2,19),(3,20),(4,21),(5,22),(6,23),(7,13),(8,14),(9,15),(10,16),(11,17),(12,18)], [(7,13),(8,14),(9,15),(10,16),(11,17),(12,18),(25,31),(26,32),(27,33),(28,34),(29,35),(30,36)], [(1,12,32),(2,7,33),(3,8,34),(4,9,35),(5,10,36),(6,11,31),(13,27,19),(14,28,20),(15,29,21),(16,30,22),(17,25,23),(18,26,24)], [(1,24),(2,19),(3,20),(4,21),(5,22),(6,23),(7,27),(8,28),(9,29),(10,30),(11,25),(12,26),(13,33),(14,34),(15,35),(16,36),(17,31),(18,32)]])

60 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J2K3A3B3C3D3E4A4B4C4D6A···6F6G···6N6O···6V6W···6AE12A···12H
order1222222222223333344446···66···66···66···612···12
size1111333366661188866661···13···36···68···86···6

60 irreducible representations

dim11111122223333
type+++++++
imageC1C2C2C3C6C6S3D6C3×S3S3×C6S4C2×S4C3×S4C6×S4
kernelC2×C6×S4C6×S4A4×C2×C6C22×S4C2×S4C22×A4C23×C6C22×C6C24C23C2×C6C6C22C2
# reps1612122132626412

Matrix representation of C2×C6×S4 in GL5(𝔽13)

120000
012000
001200
000120
000012
,
40000
04000
00100
00010
00001
,
10000
01000
001200
000120
00111
,
10000
01000
00100
000120
0012012
,
012000
112000
00121211
00100
00001
,
121000
01000
001200
00112
000012

G:=sub<GL(5,GF(13))| [12,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,12],[4,0,0,0,0,0,4,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,12,0,1,0,0,0,12,1,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,12,0,0,0,12,0,0,0,0,0,12],[0,1,0,0,0,12,12,0,0,0,0,0,12,1,0,0,0,12,0,0,0,0,11,0,1],[12,0,0,0,0,1,1,0,0,0,0,0,12,1,0,0,0,0,1,0,0,0,0,2,12] >;

C2×C6×S4 in GAP, Magma, Sage, TeX

C_2\times C_6\times S_4
% in TeX

G:=Group("C2xC6xS4");
// GroupNames label

G:=SmallGroup(288,1033);
// by ID

G=gap.SmallGroup(288,1033);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-3,-2,2,1684,6053,285,3534,475]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^6=c^2=d^2=e^3=f^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,e*c*e^-1=f*c*f=c*d=d*c,e*d*e^-1=c,d*f=f*d,f*e*f=e^-1>;
// generators/relations

׿
×
𝔽