direct product, non-abelian, soluble, monomial
Aliases: C2×C6×S4, C23⋊(S3×C6), A4⋊(C22×C6), C24⋊4(C3×S3), (C23×C6)⋊2S3, (C22×C6)⋊2D6, (C6×A4)⋊2C22, (C22×A4)⋊5C6, (C3×A4)⋊2C23, C22⋊(S3×C2×C6), (C2×A4)⋊(C2×C6), (A4×C2×C6)⋊5C2, (C2×C6)⋊2(C22×S3), SmallGroup(288,1033)
Series: Derived ►Chief ►Lower central ►Upper central
A4 — C2×C6×S4 |
Generators and relations for C2×C6×S4
G = < a,b,c,d,e,f | a2=b6=c2=d2=e3=f2=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, ece-1=fcf=cd=dc, ede-1=c, df=fd, fef=e-1 >
Subgroups: 890 in 272 conjugacy classes, 52 normal (14 characteristic)
C1, C2, C2, C3, C3, C4, C22, C22, S3, C6, C6, C2×C4, D4, C23, C23, C32, C12, A4, A4, D6, C2×C6, C2×C6, C22×C4, C2×D4, C24, C24, C3×S3, C3×C6, C2×C12, C3×D4, S4, C2×A4, C2×A4, C22×S3, C22×C6, C22×C6, C22×D4, C3×A4, S3×C6, C62, C22×C12, C6×D4, C2×S4, C22×A4, C22×A4, C23×C6, C23×C6, C3×S4, C6×A4, S3×C2×C6, D4×C2×C6, C22×S4, C6×S4, A4×C2×C6, C2×C6×S4
Quotients: C1, C2, C3, C22, S3, C6, C23, D6, C2×C6, C3×S3, S4, C22×S3, C22×C6, S3×C6, C2×S4, C3×S4, S3×C2×C6, C22×S4, C6×S4, C2×C6×S4
(1 24)(2 19)(3 20)(4 21)(5 22)(6 23)(7 13)(8 14)(9 15)(10 16)(11 17)(12 18)(25 31)(26 32)(27 33)(28 34)(29 35)(30 36)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)
(1 24)(2 19)(3 20)(4 21)(5 22)(6 23)(7 13)(8 14)(9 15)(10 16)(11 17)(12 18)
(7 13)(8 14)(9 15)(10 16)(11 17)(12 18)(25 31)(26 32)(27 33)(28 34)(29 35)(30 36)
(1 12 32)(2 7 33)(3 8 34)(4 9 35)(5 10 36)(6 11 31)(13 27 19)(14 28 20)(15 29 21)(16 30 22)(17 25 23)(18 26 24)
(1 24)(2 19)(3 20)(4 21)(5 22)(6 23)(7 27)(8 28)(9 29)(10 30)(11 25)(12 26)(13 33)(14 34)(15 35)(16 36)(17 31)(18 32)
G:=sub<Sym(36)| (1,24)(2,19)(3,20)(4,21)(5,22)(6,23)(7,13)(8,14)(9,15)(10,16)(11,17)(12,18)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36), (1,24)(2,19)(3,20)(4,21)(5,22)(6,23)(7,13)(8,14)(9,15)(10,16)(11,17)(12,18), (7,13)(8,14)(9,15)(10,16)(11,17)(12,18)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36), (1,12,32)(2,7,33)(3,8,34)(4,9,35)(5,10,36)(6,11,31)(13,27,19)(14,28,20)(15,29,21)(16,30,22)(17,25,23)(18,26,24), (1,24)(2,19)(3,20)(4,21)(5,22)(6,23)(7,27)(8,28)(9,29)(10,30)(11,25)(12,26)(13,33)(14,34)(15,35)(16,36)(17,31)(18,32)>;
G:=Group( (1,24)(2,19)(3,20)(4,21)(5,22)(6,23)(7,13)(8,14)(9,15)(10,16)(11,17)(12,18)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36), (1,24)(2,19)(3,20)(4,21)(5,22)(6,23)(7,13)(8,14)(9,15)(10,16)(11,17)(12,18), (7,13)(8,14)(9,15)(10,16)(11,17)(12,18)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36), (1,12,32)(2,7,33)(3,8,34)(4,9,35)(5,10,36)(6,11,31)(13,27,19)(14,28,20)(15,29,21)(16,30,22)(17,25,23)(18,26,24), (1,24)(2,19)(3,20)(4,21)(5,22)(6,23)(7,27)(8,28)(9,29)(10,30)(11,25)(12,26)(13,33)(14,34)(15,35)(16,36)(17,31)(18,32) );
G=PermutationGroup([[(1,24),(2,19),(3,20),(4,21),(5,22),(6,23),(7,13),(8,14),(9,15),(10,16),(11,17),(12,18),(25,31),(26,32),(27,33),(28,34),(29,35),(30,36)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36)], [(1,24),(2,19),(3,20),(4,21),(5,22),(6,23),(7,13),(8,14),(9,15),(10,16),(11,17),(12,18)], [(7,13),(8,14),(9,15),(10,16),(11,17),(12,18),(25,31),(26,32),(27,33),(28,34),(29,35),(30,36)], [(1,12,32),(2,7,33),(3,8,34),(4,9,35),(5,10,36),(6,11,31),(13,27,19),(14,28,20),(15,29,21),(16,30,22),(17,25,23),(18,26,24)], [(1,24),(2,19),(3,20),(4,21),(5,22),(6,23),(7,27),(8,28),(9,29),(10,30),(11,25),(12,26),(13,33),(14,34),(15,35),(16,36),(17,31),(18,32)]])
60 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 2K | 3A | 3B | 3C | 3D | 3E | 4A | 4B | 4C | 4D | 6A | ··· | 6F | 6G | ··· | 6N | 6O | ··· | 6V | 6W | ··· | 6AE | 12A | ··· | 12H |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 6 | ··· | 6 | 6 | ··· | 6 | 6 | ··· | 6 | 6 | ··· | 6 | 12 | ··· | 12 |
size | 1 | 1 | 1 | 1 | 3 | 3 | 3 | 3 | 6 | 6 | 6 | 6 | 1 | 1 | 8 | 8 | 8 | 6 | 6 | 6 | 6 | 1 | ··· | 1 | 3 | ··· | 3 | 6 | ··· | 6 | 8 | ··· | 8 | 6 | ··· | 6 |
60 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 |
type | + | + | + | + | + | + | + | |||||||
image | C1 | C2 | C2 | C3 | C6 | C6 | S3 | D6 | C3×S3 | S3×C6 | S4 | C2×S4 | C3×S4 | C6×S4 |
kernel | C2×C6×S4 | C6×S4 | A4×C2×C6 | C22×S4 | C2×S4 | C22×A4 | C23×C6 | C22×C6 | C24 | C23 | C2×C6 | C6 | C22 | C2 |
# reps | 1 | 6 | 1 | 2 | 12 | 2 | 1 | 3 | 2 | 6 | 2 | 6 | 4 | 12 |
Matrix representation of C2×C6×S4 ►in GL5(𝔽13)
12 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 12 |
4 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 12 | 0 |
0 | 0 | 1 | 1 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 12 | 0 |
0 | 0 | 12 | 0 | 12 |
0 | 12 | 0 | 0 | 0 |
1 | 12 | 0 | 0 | 0 |
0 | 0 | 12 | 12 | 11 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 |
12 | 1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 |
0 | 0 | 1 | 1 | 2 |
0 | 0 | 0 | 0 | 12 |
G:=sub<GL(5,GF(13))| [12,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,12],[4,0,0,0,0,0,4,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,12,0,1,0,0,0,12,1,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,12,0,0,0,12,0,0,0,0,0,12],[0,1,0,0,0,12,12,0,0,0,0,0,12,1,0,0,0,12,0,0,0,0,11,0,1],[12,0,0,0,0,1,1,0,0,0,0,0,12,1,0,0,0,0,1,0,0,0,0,2,12] >;
C2×C6×S4 in GAP, Magma, Sage, TeX
C_2\times C_6\times S_4
% in TeX
G:=Group("C2xC6xS4");
// GroupNames label
G:=SmallGroup(288,1033);
// by ID
G=gap.SmallGroup(288,1033);
# by ID
G:=PCGroup([7,-2,-2,-2,-3,-3,-2,2,1684,6053,285,3534,475]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^6=c^2=d^2=e^3=f^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,e*c*e^-1=f*c*f=c*d=d*c,e*d*e^-1=c,d*f=f*d,f*e*f=e^-1>;
// generators/relations