extension | φ:Q→Aut N | d | ρ | Label | ID |
C34.1(C2×C4) = C68.C4 | φ: C2×C4/C2 → C4 ⊆ Aut C34 | 136 | 4 | C34.1(C2xC4) | 272,29 |
C34.2(C2×C4) = D34.4C4 | φ: C2×C4/C2 → C4 ⊆ Aut C34 | 136 | 4 | C34.2(C2xC4) | 272,30 |
C34.3(C2×C4) = C4×C17⋊C4 | φ: C2×C4/C2 → C4 ⊆ Aut C34 | 68 | 4 | C34.3(C2xC4) | 272,31 |
C34.4(C2×C4) = C68⋊C4 | φ: C2×C4/C2 → C4 ⊆ Aut C34 | 68 | 4 | C34.4(C2xC4) | 272,32 |
C34.5(C2×C4) = C2×C17⋊2C8 | φ: C2×C4/C2 → C4 ⊆ Aut C34 | 272 | | C34.5(C2xC4) | 272,33 |
C34.6(C2×C4) = C17⋊M4(2) | φ: C2×C4/C2 → C4 ⊆ Aut C34 | 136 | 4- | C34.6(C2xC4) | 272,34 |
C34.7(C2×C4) = D17.D4 | φ: C2×C4/C2 → C4 ⊆ Aut C34 | 68 | 4+ | C34.7(C2xC4) | 272,35 |
C34.8(C2×C4) = C8×D17 | φ: C2×C4/C4 → C2 ⊆ Aut C34 | 136 | 2 | C34.8(C2xC4) | 272,4 |
C34.9(C2×C4) = C8⋊D17 | φ: C2×C4/C4 → C2 ⊆ Aut C34 | 136 | 2 | C34.9(C2xC4) | 272,5 |
C34.10(C2×C4) = C4×Dic17 | φ: C2×C4/C4 → C2 ⊆ Aut C34 | 272 | | C34.10(C2xC4) | 272,11 |
C34.11(C2×C4) = C34.D4 | φ: C2×C4/C4 → C2 ⊆ Aut C34 | 272 | | C34.11(C2xC4) | 272,12 |
C34.12(C2×C4) = D34⋊C4 | φ: C2×C4/C4 → C2 ⊆ Aut C34 | 136 | | C34.12(C2xC4) | 272,14 |
C34.13(C2×C4) = C2×C17⋊3C8 | φ: C2×C4/C22 → C2 ⊆ Aut C34 | 272 | | C34.13(C2xC4) | 272,9 |
C34.14(C2×C4) = C68.4C4 | φ: C2×C4/C22 → C2 ⊆ Aut C34 | 136 | 2 | C34.14(C2xC4) | 272,10 |
C34.15(C2×C4) = C68⋊3C4 | φ: C2×C4/C22 → C2 ⊆ Aut C34 | 272 | | C34.15(C2xC4) | 272,13 |
C34.16(C2×C4) = C23.D17 | φ: C2×C4/C22 → C2 ⊆ Aut C34 | 136 | | C34.16(C2xC4) | 272,19 |
C34.17(C2×C4) = C22⋊C4×C17 | central extension (φ=1) | 136 | | C34.17(C2xC4) | 272,21 |
C34.18(C2×C4) = C4⋊C4×C17 | central extension (φ=1) | 272 | | C34.18(C2xC4) | 272,22 |
C34.19(C2×C4) = M4(2)×C17 | central extension (φ=1) | 136 | 2 | C34.19(C2xC4) | 272,24 |